in

The impact of Tamarix invasion on the soil physicochemical properties

  • Mack, R. N. et al. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 10(3), 689–710 (2000).

    Google Scholar 

  • Pimentel, D. Biological invasionseconomic and environmental costs of alien plant, animal, and microbe species. No. 577.18 B5/2011. 2011.

  • Jackson, T. Addressing the economic costs of invasive alien species: Some methodological and empirical issues. Int. J. Sustain. Soc. 7(3), 221–240 (2015).

    Google Scholar 

  • Walker, B. H. & Steffen, W. L. Interactive and integrated effects of global change on terrestrial ecosystems. In The Terrestrial Biosphere and Global Change. Implications for Natural and Managed Ecosystems, Synthesis Volume. International Geosphere-Biosphere Program Book Series 4 (eds Walker, B. et al.) 329–375 (Cambridge University Press, 1999).

    Google Scholar 

  • Wilcove, D. S., Rothstein, D., Dubow, J., Phillips, A. & Losos, E. Quantifying threats to imperiled species in the United States. Bioscience 48(8), 607–615 (1998).

    Google Scholar 

  • Robinson, T. W. Introduction, Spread and Areal Extent of Saltcedar [Tamarix] in the Western States (No. 491) (US Government Printing Office, 1965).

    Google Scholar 

  • Marlin, D., Newete, S. W., Mayonde, S. G., Smit, E. R. & Byrne, M. J. Invasive Tamarix (Tamaricaceae) in South Africa: Current research and the potential for biological control. Biol. Invasions 19(10), 2971–2992 (2017).

    Google Scholar 

  • Pearce, C. M. & Smith, D. G. Saltcedar: Distribution, abundance, and dispersal mechanisms, northern Montana, USA. Wetlands 23(2), 215–228 (2003).

    Google Scholar 

  • Newete, S. W., Mayonde, S. & Byrne, M. J. Distribution and abundance of invasive Tamarix genotypes in South Africa. Weed Res. 59(3), 191–200 (2019).

    CAS 

    Google Scholar 

  • Chew, M. K. The monstering of tamarisk: How scientists made a plant into a problem. J. Hist. Biol. 42(2), 231–266 (2009).

    PubMed 

    Google Scholar 

  • Richardson, D. M., Macdonald, I. A. W., Hoffmann, J. H. & Henderson, L. Alienplantinvasions. In The Vegetation of Southern Africa (eds Cowling, R. M. et al.) 535–570 (Cambridge University Press, 1997).

    Google Scholar 

  • Ehrenfeld, J. G. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6(6), 503–523 (2003).

    CAS 

    Google Scholar 

  • Haubensak, K. A., D’Antonio, C. M. & Alexander, J. Effects of nitrogen-fixing shrubs in Washington and Coastal California1. Weed Technol. 18(sp1), 1475–1479 (2004).

    Google Scholar 

  • Hawkes, C. V., Wren, I. F., Herman, D. J. & Firestone, M. K. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol. Lett. 8(9), 976–985 (2005).

    PubMed 

    Google Scholar 

  • Kourtev, P. S., Ehrenfeld, J. G. & Häggblom, M. Exotic plant species alter the microbial community structure and function in the soil. Ecology 83(11), 3152–3166 (2002).

    Google Scholar 

  • Saggar, S., McIntosh, P. D., Hedley, C. B. & Knicker, H. Changes in soil microbial biomass, metabolic quotient, and organic matter turnover under Hieracium (H. pilosella L.). Biol. Fertility Soils 30(3), 232–238 (1999).

    CAS 

    Google Scholar 

  • Dudley, T. L., DeLoach, C. J., Levich, J. E. & Carruthers, R. I. Saltcedar invasion of western riparian areas: Impacts and new prospects for control. Trans. N. Am. Wildlife Nat. Resources Conf. 65, 345–381 (2000).

    Google Scholar 

  • Algotsson, E. Biological diversity. In Environmental Management in South Africa 2nd edn (eds Strydom, H. A. & King, N. D.) 97–125 (Juta Cape Town, 2009).

    Google Scholar 

  • Mayonde, S. G., Cron, G. V., Gaskin, J. F. & Byrne, M. J. Tamarix (Tamaricaceae) hybrids: The dominant invasive genotype in Southern Africa. Biol. Invasions 18(12), 3575–3594 (2016).

    Google Scholar 

  • Corbin, J. D. & D’Antonio, C. M. Effects of exotic species on soil nitrogen cycling: Implications for restoration1. Weed Technol. 18(sp1), 1464–1468 (2004).

    CAS 

    Google Scholar 

  • Marchante, E., Kjøller, A., Struwe, S. & Freitas, H. Soil recovery after removal of the N 2-fixing invasive Acacia longifolia: Consequences for ecosystem restoration. Biol. Invasions 11(4), 813–823 (2009).

    Google Scholar 

  • Magadlela, D. & Mdzeke, N. Social benefits in the Working for Water programme as a public works initiative: Working for water. S. Afr. J. Sci. 100(1–2), 94–96 (2004).

    Google Scholar 

  • Yelenik, S. G., Stock, W. D. & Richardson, D. M. Ecosystem level impacts of invasive Acacia saligna in the South African fynbos. Restor. Ecol. 12(1), 44–51 (2004).

    Google Scholar 

  • Malcolm, G. M., Bush, D. S. & Rice, S. K. Soil nitrogen conditions approach preinvasion levels following restoration of nitrogen-fixing black locust (Robinia pseudoacacia) stands in a Pine-Oak Ecosystem. Restor. Ecol. 16(1), 70–78 (2008).

    Google Scholar 

  • Maron, J. L. & Jefferies, R. L. Bush lupine mortality, altered resource availability, and alternative vegetation states. Ecology 80(2), 443–454 (1999).

    Google Scholar 

  • AgriLASA (Agri Laboratory Association of Southern Africa). 2004. Soil handbook.

  • Okalebo, J.R., Gathua, K.W. & Woomer, P.L. (2002). Laboratory methods of soil and plant analysis: A working manual second edition. Sacred Africa, Nairobi, 21.

  • LECO. 2003. Truspec CN Carbon/Nitrogen Determinator Instructions Manual. LECO Corporation, St Joseph, USA.

  • Suarez, D. L., Wood, J. D. & Lesch, S. M. Effect of SAR on water infiltration under a sequential rain–irrigation management system. Agric. Water Manag. 86(1–2), 150–164 (2006).

    Google Scholar 

  • Dane, J.H., and Hopmans, JW. (2002). Water retention and storage. GC Method of soil analysis. SSSA book series. Madison, Wisconsin, USA. 1692, 671–720.

  • Blakemore, L.C., Searle, P.L. and Daly, B.K. (1987). Methods for chemical analysis of soils. New Zealand Soil Bureau Scientific, Report 80. New Zealand, Lower Hutt: New Zealand Society of Soil Science, 103.

  • Buckham, L.E. (2011). Contrasting growth traits and insect interactions of two Tamarix species and a hybrid (Tamaricaceae) used for mine rehabilitation in South Africa (Doctoral dissertation).

  • Ladenburger, C. G., Hild, A. L., Kazmer, D. J. & Munn, L. C. Soil salinity patterns in Tamarix invasions in the Bighorn Basin, Wyoming, USA. J. Arid Environ. 65(1), 111–128 (2006).

    ADS 

    Google Scholar 

  • Beukes, P. C. & Ellis, F. Soil and vegetation changes across a Succulent Karoo grazing gradient. Afr. J. Range Forage Sci. 20(1), 11–19 (2003).

    Google Scholar 

  • Liu, M. et al. Monitoring the invasion of Spartina alterniflora using multi-source high-resolution imagery in the Zhangjiang Estuary, China. Remote Sensing 9(6), 539 (2017).

    ADS 

    Google Scholar 

  • Newete, S. W., Abd Elbasit, M. A. & Araya, T. Soil salinity and moisture content under non-native Tamarix species. Int. J. Phytorem. 22(9), 931–938. https://doi.org/10.1080/15226514.2020.1774503 (2020).

    CAS 
    Article 

    Google Scholar 

  • Whitford, W. G., Anderson, J. & Rice, P. M. Stemflow contribution to the ’fertile island’effect in creosotebush, Larrea tridentata. J. Arid Environ. 35(3), 451–457 (1997).

    ADS 

    Google Scholar 

  • Li, C., Li, Y. & Ma, J. Spatial heterogeneity of soil chemical properties at fine scales induced by Haloxylon ammodendron (Chenopodiaceae) plants in a sandy desert. Ecol. Res. 26(2), 385–394 (2011).

    MathSciNet 
    CAS 

    Google Scholar 

  • Sookbirsingh, R., Karina, C., Thomas, E.G. & Rusell, RC. (2010). Salt separation processes in the saltcedar Tamarix ramosissima (Lebed.). Commun Soil Sci Plant Anal. 41(10), 1271–1281.

  • Newete, S.W., Allem, S.M., Venter, N. and Byrne, M.J. Tamarix efficiency in salt excretion and physiological tolerance to salt-induced stress in South Africa. Int. J. Phytoremediat. 1–7 (2019).

  • Di Tomaso, J. M. Impact, biology, and ecology of saltcedar (Tamarix spp.) in the southwestern United States. Weed Technol. 12(2), 326–336 (1998).

    Google Scholar 

  • Smith, S. D., Devitt, D. A., Sala, A., Cleverly, J. R. & Busch, D. E. Water relations of riparian plants from warm desert regions. Wetlands 18(4), 687–696 (1998).

    Google Scholar 

  • Lesica, P. & DeLuca, T. H. Is tamarisk allelopathic?. Plant Soil 267(1–2), 357–365 (2004).

    CAS 

    Google Scholar 

  • Bagstad, K. J., Lite, S. J. & Stromberg, J. C. Vegetation, soils, and hydrogeomorphology of riparian patch types of a dryland river. Western N. Am. Naturalist 66(1), 23–45 (2006).

    Google Scholar 

  • Lehnhoff, E. A., Rew, L. J., Zabinski, C. A. & Menalled, F. D. Reduced impacts or a longer lag phase? Tamarix in the northwestern USA. Wetlands 32(3), 497–508 (2012).

    Google Scholar 

  • Ye, W., Wang, H. X., Gao, J., Liu, H. J. & Yan, L. Simulation of salt ion migration in soil under reclaimed water irrigation. J. Agro-Environ. Sci. 33(5), 1007–1015 (2014).

    CAS 

    Google Scholar 

  • Yang, S. C. et al. Characterization of soil salinization based on canonical correspondence analysis method in Gansu Yellow River irrigation district of Northwest China. Scientia Agricultura Sinica 47(1), 100–110 (2014).

    CAS 

    Google Scholar 

  • Zhang, L. H., Chen, P. H., Li, J., Chen, X. B. & Feng, Y. Distribution of soil salt ions around Tamarix chinensis individuals in the Yellow River Delta. Acta Ecol. Sin. 36(18), 5741–5749 (2016).

    CAS 

    Google Scholar 

  • Zhang, T., Zhan, X., He, J., Feng, H. & Kang, Y. Salt characteristics and soluble cations redistribution in an impermeable calcareous saline-sodic soil reclaimed with an improved drip irrigation. Agric. Water Manag. 197, 91–99 (2018).

    Google Scholar 

  • Yin, C. H., Feng, G. U., Zhang, F., Tian, C. Y. & Tang, C. Enrichment of soil fertility and salinity by tamarisk in saline soils on the northern edge of the Taklamakan Desert. Agric. Water Manag. 97(12), 1978–1986 (2010).

    Google Scholar 

  • Chaudhari, P. R., Ahire, D. V., Ahire, V. D., Chkravarty, M. & Maity, S. Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. Int. J. Sci. Res. Publ. 3(2), 1–8 (2013).

    CAS 

    Google Scholar 

  • Tanveera, A., Kanth, T. A., Tali, P. A. & Naikoo, M. Relation of soil bulk density with texture, total organic matter content and porosity in the soils of Kandi Area of Kashmir valley, India. Int. Res. J. Earth Sci. 4(1), 1–6 (2016).

    Google Scholar 

  • Sharma, B. & Bhattacharya, S. Soil bulk density as related to soil texture, moisture content, Ph, electrical conductivity, organic carbon, organic matter content and available macro nutrients of Pandoga sub watershed, Una District of HP (India). Int. J. Eng. Res. Dev. 13(12), 72–76 (2017).

    Google Scholar 


  • Source: Ecology - nature.com

    Ocean vital signs

    Privately protected areas increase global protected area coverage and connectivity