in

The influence and acting pattern of China's national carbon emission trading scheme on regional ecologicalization efficiency of industry

Benchmark regression results

Parallel trend test

The premise of using DID is that the treatment group and control group meet the assumptions of parallel trend, which means that before ETS is officially implemented, the evolution trend of ecologicalization efficiency of industry of the control group and the experimental group is consistent and does not show a systematic difference. This study uses a more rigorous empirical test in parallel trend test: if the interaction coefficient is not significant and is different from zero before the implementation of ETS; and if the interaction coefficient is significant and is different from zero after the implementation of ETS, it indicates that there is no significant difference in ecologicalization efficiency of industry between the control group and the experimental group before the implementation of ETS. Results are shown in Table 4: before ETS was officially implemented, the difference coefficient was not significant; after the official implementation of ETS in 2013, the difference coefficient was significant and not equal to 0, and the ecologicalization efficiency of industry was improved significantly, which met the parallel trend of the DID. Therefore, it is scientific and reasonable to evaluate the effectiveness of ETS with DID.

Table 4 Parallel trend test.
Full size table

Dynamic effect analysis

To compare the conditions of the experimental group and the control group before and after the implementation of ETS, dynamic graphs are drawn in this study, as shown in Fig. 1, which shows the impact of ETS on the regional ecologicalization efficiency of industry. The vertical line represents a 95% confidence interval and the broken line shows the marginal effect of regional ecologicalization efficiency, which means that the confidence interval contains is 0 before ETS’s implementation, and the result is not significant. In contrast, after 2013, the effect of ETS became apparent, the marginal effect gradually increased and the results became significant, perhaps owing to the implementation of ETS.

Figure 1

Dynamic analysis diagram.

Full size image

The effect of ETS on ecologicalization efficiency of industry

Controlling time effect and fixed effect, this study collected the data of pilot and non-pilot provinces of ETS from 2007 to 2019 to analyze the impact of ETS on the regional ecologicalization efficiency of industry and regional heterogeneity. The results are shown in Table 5. According to the results in the first column, ETS has significantly promoted the regional ecologicalization efficiency of industry, and the national implementation of ETS has achieved remarkable results. Compared with the regions that are not ETS pilot areas, the ecologicalization efficiency of industry of pilot provinces and cities has increased by 35%. Results also show that ETS has different effects on the ecologicalization efficiency of industry in different regions. Specifically, ETS significantly promoted regional ecologicalization efficiency of industry in the eastern and central regions, and the efficiency in the eastern region was more significant than that of the central region. However, the impact of ETS on the regional ecologicalization efficiency of industry in the western region was negative which may result from the fact that compared to the central and western regions, the east region has better economic development, advanced technology, and lots of talents that can respond to the implementation of ETS, accelerate the upgrade of industries, and improve the utilization level of regional resources. There are many traditional industries in the central and western regions, and the development of scientific and technological levels as well as the resource utilization efficiency there are relatively slow. Besides, it is difficult for the central and western regions to adapt to ETS in a short-term of time leading to the failure of improving the regional ecologicalization efficiency of industry in a short time.

Table 5 Influence of ETS on ecologicalization efficiency of industry.
Full size table

Robustness test

Propensity matching score—double difference method (PSM-DID)

The assumption of homogeneity and randomness between the control group and the experimental group is the premise of using the DID model. However, due to the large economic and regional differences among provinces and cities, there may be systematic differences between the experimental group and the control group, which may cause deviations in the results. Therefore, the data after propensity score matching is used in this study, making the matched individuals have no other significant differences unless they have been treated or not. The dual difference is conducted again to avoid self-selection bias, and the robustness of the above results is verified according to the measurement results. Control variables were used to match characteristic variables, the experimental group was matched with the control group, and the Logit model was adopted to delete the samples that fail to meet the matching criteria. After the matching, there are 168 observation values. The regression results of PSM-DID model show that, ETS has positive effects on the regional ecologicalization of industry (0.460***), which again proves that the conclusion that ETS improves regional ecologicalization of industry efficiency is reliable. The results are shown in Table 6.

Table 6 The result of the PSM-DID.
Full size table

Counterfactual test

To verify the robustness of the results again, six provinces and cities are randomly selected as experimental groups for multiple tests to construct new dummy variables of ETS, and the DID model was used again to verify the credibility of the above results. Four random samples were conducted in this study, and the results are shown in Table 7. It can be seen that the results are not significant, which also reversely proves that ETS improves the regional ecologicalization efficiency of industry.

Table 7 Counterfactual test results.
Full size table

Acting pattern analysis of ETS on the regional ecologicalization efficiency of industry

First, ETS may improve the regional ecologicalization efficiency of industry through industrial structure optimization and upgrading. Promoting upgrading of the industrial structure is one of the important approaches of social and economic development during the 14th Five-Year Plan formulation and is the only way to promote low-carbon and sustainable development of modern national industries. The upgrading of the industrial structure has been promoted to the national strategic level, contributing to the healthy development of the national economy system. ETS bring costs and benefits to enterprises, forcing them to transform and upgrade, increase investment in environmental protection and use clean energy, and accelerate the pace of energy conservation and emission reduction31. Second, ETS may improve the regional ecologicalization efficiency of industry through the coordinated agglomeration of resources. Marshall’s theory of scale economy, Krugman’s theory of new economic geography, Weber’s theory of agglomeration economy, Coase’s transaction cost theory, and so on reflect the importance of resource aggregation of economic activities through cost-saving, resource sharing, and other ways to improve industrial input–output efficiency, enhance industrial competitiveness, increase regional comprehensive strength and strengthen the competitive advantage of regional industrial clusters32. The benefits generated by resource aggregation far exceed the sum of benefits generated by various industries in the decentralized state. Under the pressure of ETS, enterprises may alleviate the mismatch between labor and capital through the collaborative aggregation of industrial resources, aiming to improve economic benefits and regional resource allocation efficiency and promote regional ecologicalization efficiency of industry. Third, ETS may improve the regional ecologicalization efficiency of industry by supporting ecological optimization. The sustainable development of the ecological environment is closely related to emission reduction policy. To alleviate the bad effects on the ecology, environmental protection is more and more brought to the attention of society and government. Policies for ecological protection have been introduced to reduce pollution20. All regions take effective and targeted measures to control environmental pollution and optimize the investment structure in light of their actual conditions. The purpose of ecological optimization is to improve the regional environment and strengthen pollution control which is one of the important parts of China’s fiscal spending. The government must guide the market to carry out ecological protection and environmental governance according to ETS. Studies have found that a low-carbon pilot policy helps to enhance the level of regional pollution control, promote the harmonious development of regional economy and environment, and then improve the regional ecologicalization efficiency of industry.

To explore the transmission mechanism of ETS on the regional ecologicalization of industry efficiency, Baron and Kenny (1986)’s mediating effect model was referred to explore and verify whether there exists a structural optimization upgrade effect, resource synergistic agglomeration effect, ecological optimization support effect when ETC promotes regional ecologicalization efficiency of industry. Table 8 shows the regression results of the influence mechanism of ETS on the regional ecologicalization efficiency of industry. This study refers to the definition and research of industrial optimization and upgrading by Wang Qunwei, Huang Xianglan, and others, and the proportion of tertiary industry added value accounting for industrial added value is selected to measure the effectiveness of industrial optimization and upgrading. For resource synergistic agglomeration effect, this study refers to the calculation methods of Cui Shuhui, Chen Jianjun et al. and adopts the collaborative aggregation index of manufacturing and producer services to measure the collaborative aggregation effect of resources, which effectively avoids the scale difference between different regions. It can be seen from the table that the implementation of ETS has significantly influenced the three effects proposed by this study: the optimization and upgrading effect of industrial structure, the synergistic aggregation effect of resources, and the support effect of ecological optimization. In addition, ETS has a positive and significant impact on the regional ecologicalization efficiency of industry. The results in Columns 3, 5, and 7 of the table show the industrial optimization and upgrading effect, resource synergistic aggregation effect, structural upgrading effect, and resource allocation effect generated in the process of low-carbon pilot policy operation can significantly promote regional ecologicalization efficiency of industry and have an obvious intermediary effect. The mediating effect produced by industrial structure optimization and upgrading is about 0.042, the mediating effect produced by resource synergy agglomeration is about 0.148, and the mediating effect produced by ecological optimization support is about 0.166. According to the Sobal test results, all of them have passed the test, indicating that the above results are reliable.

Table 8 Mediating effect test results.
Full size table


Source: Ecology - nature.com

MIT engineers design surfaces that make water boil more efficiently

Comparative efficacy of phosphorous supplements with phosphate solubilizing bacteria for optimizing wheat yield in calcareous soils