Taco-Taype, N. & Zúñiga-Dávila, D. Efecto de la inoculación de plantas de Tarwi con cepas de Bradyrhizobium spp. aisladas de un lupino silvestre, en condiciones de invernadero. Revista peruana de biología. 27, 35–42 (2022).
Google Scholar
Atchison, G. W. et al. Lost crops of the Incas: Origins of domestication of the Andean pulse crop tarwi Lupinus mutabilis. Am. J. Bot. 103, 1592–1606 (2016).
Google Scholar
Peru Origins. Tarwi (Lupinus Mutabilis). https://peruorigins.com/tarwi/ (2022).
Guilengue, N., Alves, S., Talhinhas, P. & Neves-Martins, J. Genetic and genomic diversity in a tarwi (Lupinus mutabilis Sweet) germplasm collection and adaptability to Mediterranean climate conditions. Agronomy 10, 21 (2020).
Google Scholar
Repo-Carrasco-Valencia, R., Basilio-Atencio, J., Luna-Mercado, G. I., Pilco-Quesada, S. & VidaurreRuiz, J. Andean ancient grains: Nutritional value and novel uses. Biol. Life Sci. Forum. https://doi.org/10.3390/blsf2021008015 (2022).
Google Scholar
Gulisano, A., Alves, S., Martins, J. N. & Trindade, L. M. Genetics and breeding of Lupinus mutabilis: An emerging protein crop. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.01385 (2019).
Google Scholar
Chen, Y., She, Y., Zhang, R., Wang, J. & Zhang, X. Use of starch-based fat replacers in foods as a strategy to reduce dietary intake of fat and risk of metabolic diseases. Food Sci. Nutr. 8, 16–22 (2020).
Google Scholar
Frick, K. M., Kamphuis, L. G., Siddique, K. H. M., Singh, K. B. & Foley, R. C. Quinolizidine alkaloid biosynthesis in lupins and prospects for grain quality improvement. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.00087 (2017).
Google Scholar
Chirinos-Arias, M. C. Andean Lupin (Lupinus mutabilis Sweet) a plant with nutraceutical and medicinal potential. Revista Bio. Ciencias. 3, 163–172 (2015).
Wink, M. Chemical defense of leguminosae. Are quinolizidine alkaloids part of the antimicrobial defense system of lupins?. Zeitschrift für Naturforschung C. 39, 548–552 (1984).
Google Scholar
Hidalgo, M. et al. Evaluation of in vitro suceptibility to spartein in four strain of Mycobacterium tuberculosis. Rev. Peru Med Exp Salud Publica. 39, 77–82 (2022).
Google Scholar
Muñoz, E. B., Luna-Vital, D. A., Fornasini, M., Baldeón, M. E. & Gonzalez de Mejia, E. Gamma-conglutin peptides from Andean lupin legume (Lupinus mutabilis Sweet) enhanced glucose uptake and reduced gluconeogenesis in vitro. J. Funct. 45, 339–347 (2018).
Google Scholar
Bryant, L., Rangan, A. & Grafenauer, S. Lupins and health outcomes: A systematic literature review. Nutrients 14, 327 (2022).
Google Scholar
Jacobsen, S. & Mujica, A. Geographical distribution of the Andean lupin (Lupinus mutabilis Sweet). Plant Genet. Resour. Newslett. 155, 1–8 (2008).
Antunez de Mayolo, S. Nutricion en el antiguo Peru. Banco Central de la Republica. Lima, Peru. 127 (1981).
FAO. Perfiles nutricionales por paises: Peru. (ed. FAO) 36 p. (2000).
UNICEF. Estado Mundial de la Infancia 2019 incluye a Perú entre las experiencias exitosas de lucha contra la desnutrición crónica infantile. https://www.unicef.org/peru/nota-de-prensa/estado-mundial-infancia-nutricion-alimentos-derechos-peru-experiencias-exitosas-desnutricion-cronica-infantil-reporte (2022).
MINSA (Ministry of health – Peru). Situacion actual de la anemia. https://anemia.ins.gob.pe/situacion-actual-de-la-anemia-c1 (2022).
WHO. Anemia. https://www.who.int/es/health-topics/anaemia#tab=tab_1 (2022).
Galani, Y. J. H., Orfila, C. & Gong, Y. Y. A review of micronutrient deficiencies and analysis of maize contribution to nutrient requirements of women and children in Eastern and Southern Africa. Crit. Rev. Food Sci. Nutr. 62, 1568–1591 (2022).
Google Scholar
White, P. J. & Martin, R. B. Biofortifying crops with essential mineral elements. Trends Plant Sci. 10, 586–593 (2005).
Google Scholar
White, P. J. & Martin, R. B. Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 182, 49–84 (2009).
Google Scholar
Waters, B. M. & Sankaran, R. P. Moving micronutrients from the soil to the seeds: genes and physiological processes from a biofortification perspective. Plant Sciences. 180, 562–574 (2011).
Google Scholar
Brooker, R. W. et al. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytol. 206, 107–117 (2015).
Google Scholar
Ducsay, L. et al. Possibility of selenium biofortification of winter wheat grain. Plant Soil Environ. 62, 379–383 (2016).
Google Scholar
Kumar, S. & Pandey, G. Biofortification of pulses and legumes to enhance nutrition. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e03682 (2020).
Google Scholar
Diehn, T. A. et al. Boron demanding tissues of Brassica napus express specific sets of functional Nodulin26-like Intrinsic Proteins and BOR 1 transporters. Plant J. 100, 68–82 (2019).
Google Scholar
Jayalakshmi, V. A., Reddy, T. & Nagamadhuri, K. V. Genetic diversity and variability for protein and micro nutrients in advance breeding lines and chickpea varieties grown in Andhra Pradesh.”. Legume Res. Int. J. 42, 768–772 (2019).
Bouis, H. & Saltzman, A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec. 12, 49–58 (2017).
Google Scholar
Sanca, D. Composición nutricional de diez genotipos de lupino (L. mutabilis y L. albus) desamargados por proceso acuoso. Thesis. Universidad Nacional Agraria La Molina. (2015).
Rodríguez, A. Evaluación “in vitro” de la actividad antibacteriana de los alcaloides del agua de desamargado del chocho (Lupinus mutrabilis Sweet). Thesis. Escuela Superior Politécnica de Chimborazo, Ecuador (2009).
Villacres, E. et al. Germination, an effective process to in-crease the nutritional value and reduce non-nutritive factors of lupine grain (Lupinus mutabilis Sweet). Int. J. Food Sci. Nutr. Eng. 5, 163–168 (2015).
Villacres, E., Rubio, A., Egas, L., Segovia, G. Usos alternativos del chocho: Chocho (Lupinus mutabilis Sweet) alimento andino redescubierto. IOP publishing: repositorio. https://repositorio.iniap.gob.ec/handle/41000/298 (2006).
Ortega-David, E. A., Rodríguez, A. D. & Burbano, A. Z. Caracterización de semillas de lupino (Lupinus mutabilis) sembrado en los Andes de Colombia. Acta Agronómica. 59, 111–118 (2010).
White, P. J. & Broadley, M. R. Physiological limits to zinc biofortification of edible crops. Front Plant Sci. 80, 1–11 (2011).
Zhao, F., Su, Y. H., Dunham, S. J. & Rakszegiet, M. Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J. Cereal Sci. 49, 290–295 (2009).
Google Scholar
Uauy, C., Distelfeld, A., Fahima, T., Blechl, A. & Dubcovsky, J. A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 24, 1298–1301 (2006).
Google Scholar
Shorrocks, V. M. The occurrence and correction of boron deficiency. Plant Soil 193, 121–148 (1997).
Google Scholar
D’Imperio, M. et al. Boron biofortification of Portulaca oleracea L. through soilless cultivation for a new tailored crop. Agronomy. 10, 999–1013 (2020).
Google Scholar
Boyacioglu, O., Orenay-Boyacioglu, S., Yildirim, H. & Korkmaz, M. Boron intake, osteocalcin polymorphism and serum level in postmenopausal osteoporosis. J. Trace Elem. Med. Biol. 48, 52–56 (2018).
Google Scholar
Oliveira Araújo, E., Ferreira Dos Santos, E. & Camacho Oliveira, M. A. Boron-zinc interaction in the absorption of micronutrients by cotton. Agronomía Colombiana. 36, 51–57 (2018).
Google Scholar
Squitti, R., Siotto, M. & Polimanti, R. Low-copper diet as a preventive strategy for Alzheimer’s disease. Neurobiol. Aging 2, 40–50 (2014).
Google Scholar
Schilsky, M.L. Management of Wilson Disease (A Pocket Guide), 1st ed.; Publisher: Humana Press, Farmington, CT, USA. 154–196 (2018).
Martins, A. C. et al. Manganese in the diet: Bioaccessibility, adequate intake, and neurotoxicological effects. J. Agric. Food Chem. 46, 12893–12903 (2020).
Google Scholar
Falah, S. A. & Saja, N. M. Essential trace elements and their vital roles in human body. Indian J. Adv. Chem. Sci. 3, 127–136 (2017).
National institutes of health. Manganese. Fact Sheet for Health Professionals. IOP Publishing ods.od.nih.gov. https://ods.od.nih.gov/factsheets/Manganese-HealthProfessional/. (2021).
Savadi, S. Molecular regulation of seed development and strategies for engineering seed size in crop plants. Plant Growth Regul. 84, 401–422 (2018).
Google Scholar
Ge, L. et al. (2016) Increasing seed size and quality by manipulating BIG SEEDS1 in legume species. Proc Natl Acad Sci. 113, 12414–12419 (2016).
Google Scholar
Zou, L. Effects of gradual and sudden heat stress on seed quality of Andean lupin, Lupinus mutabilis. Thesis. University of Helsinki. https://helda.helsinki.fi/handle/10138/16501 (2009).
Buircell, B.J., Cowling, A.W. Genetic Resources in Lupins (eds. Gladstones, J.S., Atkins, C.A., Hamblin, J.) (United Kingdom: CAB International, 1998).
Aguilar-Angulo, L. A. Evaluación del rendimiento de grano y capacidad simbiótica de once accesiones de tarwi (Lupinus mutabilis Sweet), bajo condiciones de Otuzco-La Libertad (Universidad Nacional Agraria La Molina, 2015).
De La Cruz, N. Caracterización fenotípica y de rendimiento preliminar de ecotipos de tarwi (Lupinus mutabilis sweet), bajo condiciones del Callejón de Huaylas – Ancash (Universidad Nacional Agraria la Molina, 2018).
Huisa, J. Evaluación del comportamiento agronómico de catorce accesiones del ensayo nacional de tarwi (Lupinus mutabilis sweet.) en el CIP Camacani Puno – Perú”. Thesis. Universidad Nacional Agraria la Moina (2018).
Cayo, B. Evaluación del comportamiento agronómico de ocho genotipos selectos de tarwi (Lupinus mutabilis sweet) bajo condiciones del CIP. CAMACANI – UNA – PUNO. Thesis. Universidad Nacional del Altiplano (2020).
Buircell, B.J., Cowling, A.W. Lupin. Lupinus spp. Promoting the conservation and use of underutilized and ne-glected crops (eds. Gladstones, J.S., Atkins, C.A., Hamblin, J.) (United Kingdom: CAB International, 1998).
Plata, J. Comportamiento Agronómico de dos Variedades de tarwi (Lupinus mutabilis Sweet), bajo tres densidades de siembra en la comunidad Marka Hilata Carabuco (Universidad San Andres, 2016).
Mendoza, C. Rendimiento de ecotipos regionales y variedades de tarwi (Lupínus mutabilis Sweet.) en el valle del Mantaro, Jauja, Junín. Thesis. Universidad Nacional Agraria la Moina (2020).
Aguilar, S. Sistemas de producción de Lupinus mutabilis Sweet ‘chocho’ en terrazas y laderas con fertilización fosfatada en Cajamarca. Dissertation. La Molina National Agrarian University (2011).
Aquino, S. Sustentabilidad del cultivo de tarwi (Lupinus mutabilis sweet) en la zona altoandina del Valle del Mantaro (Universidad Nacional Agraria la Molina, 2018).
Barda, M. S., Chatzigeorgiou, T., Papadopoulos, G. K. & Bebeli, P. J. Agro-morphological evaluation of Lupinus mutabilis in two locations in greece and association with insect pollinators. Agriculture https://doi.org/10.3390/agriculture11030236 (2021).
Google Scholar
Herniter, I. A., Jia, Z. & Kusi, F. Market preferences for cowpea (Vigna unguiculata [L.] Walp) dry grain in Ghana. African J Ag Res. 14, 928–934 (2019).
Google Scholar
Dordas, C. Foliar boron application affects lint and seed yield and improves seed quality of cotton grown on calcareous soils. Nutr. Cycl. Agroecosyst. 76, 19–28 (2006).
Google Scholar
Kristek, S. et al. Effect of various rates of boron on yield and quality of high-grade sugar beet varieties. Listy Cukrovarnické a Řepařské. 4, 146–150 (2018).
Thomas, C. L. et al. Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit. BMC Plant Biol. 16, 214–232 (2016).
Google Scholar
Dursun, A. et al. Effects of boron fertilizer on tomato, pepper and cucumber yields and chemical composition. Commun Soil Sci Plant Anal. 1, 1576–1593 (2010).
Google Scholar
Sotiropoulos, T. E., Therios, T. N., Dimassi, K. N., Bosabalidis, A. & Kofidis, G. Nutritional status, growth, CO2 assimilation, and leaf anatomical responses in two kiwifruit species under boron toxicity. J Plant Nutr. 25, 1249–1261 (2002).
Google Scholar
Muccifora, S. & Bellani, L. Effects of copper on germination and reserve mobilization in Vicia sativa L. seeds. Environ. Pollut. 179, 68–74 (2013).
Google Scholar
Kobraee, S. Effect of foliar fertilization with zinc and manganese sulfate on yield, dry matter accumulation, and zinc and manganese contents in leaf and seed of chickpea (Cicer arietinum). J. Appl. Biol. Biotechnol. 7, 20–28 (2019).
Google Scholar
IBPGR (1981) Lupin descriptors. https://www.bioversityinternational.org/fileadmin/bioversity/publications/Web_version/103/ (1981).
Zasoski, R. J. & Burau, R. G. A rapid nitric-perchloric acid digestion method for multi-element tissue analysis. Commun. Soil Sci. Plant Anal. 8, 425–436 (1997).
Google Scholar
Pereira, T., Coelho, C. M. M., Bogo, A., Guidolin, A. F. & Miquelluti, D. J. Diversity in common bean landraces from south Brazil. Acta Bot. Croat. 1, 79–92 (2009).
Pujar, M., Govindaraj, M., Gangaprasad, S., Kanatti, A. & Shivade, H. Genetic variation and diversity for grain iron, zinc, protein and agronomic traits in advanced breeding lines of pearl millet [Pennisetum glaucum (L.) R Br] for biofortification breeding. Genet. Resour. Crop Evol. 67, 2009–2022 (2020).
Google Scholar
Lira, J. P. E. et al. Safflower genetic diversity based on agronomic characteristics in Mato Grosso state, Brazil, for a crop improvement program. Genet. Mol. Res. 1, 1–12 (2021).
de Sá, S. F. et al. Genetic diversity via REML-BLUP of ex situ conserved macauba [Acrocomia aculeata (Jacq.) Lodd. ex Mart.] ecotypes. Genet. Resour. Crop Evol. 68, 3193–3204 (2021).
Google Scholar
Kuru, R., Yilmaz, S., Tasli, P. N., Yarat, A. & Sahin, F. Boron content of some foods consumed in Istanbul, Turkey. Biol. Trace Elem. Res. 187, 1–8 (2019).
Google Scholar
Shokunbi, O., Adepoju, O., Mojapelo, P., Ramaite, I. & Akinyele, I. Copper, manganese, iron and zinc contents of Nigerian foods and estimates of adult dietary intakes. J. Food Compos. Anal. 82, 103–245 (2019).
Google Scholar
Norwegian scientific committee for food and environment. Assessment of dietary intake of manganese in rela-tion to tolerable upper intake. IOP Publishing wkm. www.vkm.no. (2018).
Gil, V., Guzmán, L. & Quintero, E. Caracterización de la variabilidad morfológica de un “genotipo local” de maíz y dos de sus selecciones. Centro Agrícola. 4, 79–83 (2004).
Source: Ecology - nature.com