in

The multicausal twilight of South American native mammalian predators (Metatheria, Sparassodonta)

  • 1.

    Simpson, G. G. History of the fauna of Latin America. Am. Sci. 38, 361–389 (1950).

    Google Scholar 

  • 2.

    Patterson, B. D. & Costa, L. P. Bones, Clones, and Biomes: The History and Geography of Recent Neotropical Mammals (The University of Chicago Press, 2012).

  • 3.

    Cidade, G. M., Fortier, D. & Hsiou, A. S. The crocodylomorph fauna of the Cenozoic of South America and its evolutionary history: a review. J. South Am. Earth Sci. 90, 392–411 (2019).

    ADS 

    Google Scholar 

  • 4.

    Tambussi, C. P. & Degrange, F. J. South American and Antarctic Continental Cenozoic Birds. (Springer Netherlands, 2013). https://doi.org/10.1007/978-94-007-5467-6.

  • 5.

    Marshall, L. G. Evolution of the carnivorous adaptive zone in South America. In Major Patterns in Vertebrate Evolution (eds. Hecht, M. K., Goody, P. C. & Hecht, B. M.) 709–721 (Springer US, 1977). https://doi.org/10.1007/978-1-4684-8851-7_24.

  • 6.

    Marshall, L. G. & Cifelli, R. L. Analysis of changing diversity patterns in Cenozoic land mammal age faunas, South America. Palaeovertebrata 19, 169–210 (1990).

    Google Scholar 

  • 7.

    Prevosti, F. J., Forasiepi, A. & Zimicz, N. The evolution of the cenozoic terrestrial mammalian predator guild in South America: competition or replacement?. J. Mamm. Evol. 20, 3–21 (2013).

    Google Scholar 

  • 8.

    Prevosti, F. J. & Forasiepi, A. M. Evolution of South American mammalian predators during the Cenozoic: paleobiogeographic and paleoenvironmental contingencies. (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-03701-1.

  • 9.

    Croft, D. A. Do marsupials make good predators? Insights from predator-prey diversity ratios. Evol. Ecol. Res. 8, 1193–1214 (2006).

    Google Scholar 

  • 10.

    Albino, A. M. Snakes from the Paleocene and Eocene of Patagonia (Argentina): Paleoecology and coevolution with mammals. Hist. Biol. 7, 51–69 (1993).

    Google Scholar 

  • 11.

    Head, J. J. et al. Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures. Nature 457, 715–717 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 12.

    de Muizon, C., Ladevèze, S., Selva, C., Vignaud, R. & Goussard, F. Allqokirus australis (Sparassodonta, Metatheria) from the early Palaeocene of Tiupampa (Bolivia) and the rise of the metatherian carnivorous radiation in South America. Geodiversitas 40, 363 (2018).

    Google Scholar 

  • 13.

    Forasiepi, A. M. Osteology of Arctodictis sinclairi (Mammalia, Metatheria, Sparassodonta) and phylogeny of Cenozoic metatherian carnivores from South America. Monogr. Mus. Argentino Cienc. Nat., n.s. 6, 1–174 (2009).

  • 14.

    Prevosti, F. J. et al. New radiometric 40Ar–39Ar dates and faunistic analyses refine evolutionary dynamics of Neogene vertebrate assemblages in southern South America. Sci. Rep. 11, 9830 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Pérez, L. F. et al. Oceanographic and climatic consequences of the tectonic evolution of the southern scotia sea basins, Antarctica. Earth-Science Rev. 198, 102922 (2019).

    Google Scholar 

  • 16.

    Williams, S. E., Whittaker, J. M., Halpin, J. A. & Müller, R. D. Australian-Antarctic breakup and seafloor spreading: Balancing geological and geophysical constraints. Earth-Science Rev. 188, 41–58 (2019).

    ADS 

    Google Scholar 

  • 17.

    Gelfo, J. N. Considerations about the evolutionary stasis of Notiolofos arquinotiensis (Mammalia: Sparnotheriodontidae), Eocene of Seymour Island, Antartica. Ameghiniana 53, 316–332 (2016).

    Google Scholar 

  • 18.

    Goin, F. J. et al. New metatherian mammal from the Early Eocene of Antarctica. J. Mamm. Evol. https://doi.org/10.1007/s10914-018-9449-6 (2018).

    Article 

    Google Scholar 

  • 19.

    Reguero, M. A. et al. Final Gondwana breakup: The Paleogene South American native ungulates and the demise of the South America-Antarctica land connection. Glob. Planet. Change 123, 400–413 (2014).

    ADS 

    Google Scholar 

  • 20.

    Ramos, V. A. & Aleman, A. Tectonic evolution of the Andes. in Tectonic evolution of South America (eds. Cordani, U. G., Milani, E. J., Thomaz Filho, A. & Campos, D. A.) 635–685 (2000).

  • 21.

    Boschman, L. M. Andean mountain building since the Late Cretaceous: A paleoelevation reconstruction. Earth-Science Rev. 220, 103640 (2021).

    Google Scholar 

  • 22.

    Fosdick, J. C., Reat, E. J., Carrapa, B., Ortiz, G. & Alvarado, P. M. Retroarc basin reorganization and aridification during Paleogene uplift of the southern central Andes. Tectonics 36, 493–514 (2017).

    ADS 

    Google Scholar 

  • 23.

    Leier, A., McQuarrie, N., Garzione, C. & Eiler, J. Stable isotope evidence for multiple pulses of rapid surface uplift in the Central Andes, Bolivia. Earth Planet. Sci. Lett. 371–372, 49–58 (2013).

    ADS 

    Google Scholar 

  • 24.

    Cione, A. L., Gasparini, G. M., Soibelzon, E., Soibelzon, L. H. & Tonni, E. P. The Great American Biotic Interchange: a South American perspective. (Springer, 2015).

  • 25.

    Coates, A. G. & Stallard, R. F. How old is the isthmus of Panama?. Bull. Mar. Sci. 89, 801–813 (2013).

    Google Scholar 

  • 26.

    Montes, C. et al. Middle Miocene closure of the Central American Seaway. Science (80-) 348, 226–229 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 27.

    Auderset, A. et al. Gulf Stream intensification after the early Pliocene shoaling of the Central American Seaway. Earth Planet. Sci. Lett. 520, 268–278 (2019).

    CAS 

    Google Scholar 

  • 28.

    Scher, H. D. et al. Onset of Antarctic Circumpolar Current 30 million years ago as Tasmanian Gateway aligned with westerlies. Nature 523, 580–583 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Benton, M. J. The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science (80-) 323, 728–732 (2009).

    ADS 
    CAS 

    Google Scholar 

  • 30.

    Van Valen, L. New evolutionary law. Evol. Theory 1, 1–30 (1973).

    Google Scholar 

  • 31.

    Cione, A. L., Tonni, E. P. & Soibelzon, L. The Broken Zig-Zag: Late Cenozoic large mammal and tortoise extinction in South America. Rev. del Mus. Argentino Ciencias Nat. n.s. 5, 1–19 (2003).

  • 32.

    Leigh, E. G., O’Dea, A. & Vermeij, G. J. Historical biogeography of the isthmus of Panama. Biol. Rev. 89, 148–172 (2014).

    PubMed 

    Google Scholar 

  • 33.

    Werdelin, L. Jaw geometry and molar morphology in Marsupial carnivores: Analysis of a constraint and its macroevolutionary consequences. Paleobiology 13, 342–350 (1987).

    Google Scholar 

  • 34.

    Goin, F. J. & Montalvo, C. Revisión sistemática y reconocimiento de una nueva especie del género Thylatheridium Reig (Marsupialia, Didelphidae). Ameghiniana 25, 161–167 (1988).

    Google Scholar 

  • 35.

    Goin, F. J. & Pardiñas, U. F. J. Revision de las especies del genero Hyperdidelphys Ameghino, 1904 (Mammalia, Marsupialia, Didelphidae). Su significación filogenética, estratigráfica y adaptativa en el Neogeno del Cono Sur Sudamericano. Estud. Geológicos 52, 327–359 (1996).

  • 36.

    Beck, R. M. D. & Taglioretti, M. L. A nearly complete juvenile skull of the marsupial Sparassocynus derivatus from the Pliocene of Argentina, the affinities of “sparassocynids”, and the diversification of opossums (Marsupialia; Didelphimorphia; Didelphidae). J. Mamm. Evol. 27, 385–417 (2020).

    Google Scholar 

  • 37.

    López-Aguirre, C., Archer, M., Hand, S. J. & Laffan, S. W. Extinction of South American sparassodontans (Metatheria): Environmental fluctuations or complex ecological processes?. Palaeontology 60, 91–115 (2017).

    Google Scholar 

  • 38.

    Forasiepi, A. M., Martinelli, A. G. & Goin, F. J. Revisión taxonómica de Parahyaenodon argentinus Ameghino y sus implicancias en el conocimiento de los grandes mamíferos carnívoros del Mio-Plioceno de América de Sur. Ameghiniana 44, 143–159 (2007).

    Google Scholar 

  • 39.

    Zimicz, N. Avoiding competition: the ecological history of late Cenozoic metatherian carnivores in South America. J. Mamm. Evol. 21, 383–393 (2014).

    Google Scholar 

  • 40.

    Echarri, S., Ercoli, M. D., Chemisquy, M. A., Turazzini, G. & Prevosti, F. J. Mandible morphology and diet of the South American extinct metatherian predators (Mammalia, Metatheria, Sparassodonta). Earth Environ. Sci. Trans. R. Soc. Edinburgh 106, 277–288 (2017).

  • 41.

    Croft, D. A., Engelman, R. K., Dolgushina, T. & Wesley, G. Diversity and disparity of sparassodonts (Metatheria) reveal non-analogue nature of ancient South American mammalian carnivore guilds. Proc. R. Soc. B Biol. Sci. 285, 20172012 (2018).

    Google Scholar 

  • 42.

    Engelman, R. K. & Croft, D. A. A new species of small-bodied sparassodont (Mammalia, Metatheria) from the middle Miocene locality of Quebrada Honda, Bolivia. J. Vertebr. Paleontol. 34, 672–688 (2014).

    Google Scholar 

  • 43.

    Engelman, R. K. & Croft, D. A. Strangers in a strange land: ecological dissimilarity to metatherian carnivores may partly explain early colonization of South America by Cyonasua– group procyonids. Paleobiology 45, 598–611 (2019).

    Google Scholar 

  • 44.

    Engelman, R. K., Anaya, F. & Croft, D. A. Australogale leptognathus, gen. et sp. nov., a Second Species of Small Sparassodont (Mammalia: Metatheria) from the Middle Miocene Locality of Quebrada Honda, Bolivia. J. Mamm. Evol. 27, 37–54 (2020).

  • 45.

    Silvestro, D., Schnitzler, J., Liow, L. H., Antonelli, A. & Salamin, N. Bayesian estimation of speciation and extinction from incomplete fossil occurrence data. Syst. Biol. 63, 349–367 (2014).

    PubMed 

    Google Scholar 

  • 46.

    Lehtonen, S. et al. Environmentally driven extinction and opportunistic origination explain fern diversification patterns. Sci. Rep. 7, 4831 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Rangel, C. et al. Diversity, affinities and adaptations of the basal sparassodont Patene Simpson, 1935 (Mammalia, Metatheria). Ameghiniana 56, 263–289 (2019).

    Google Scholar 

  • 48.

    Alroy, J. et al. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proc. Natl. Acad. Sci. 98, 6261–6266 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Badgley, C. The multiple scales of biodiversity. Paleobiology 29, 11–13 (2003).

    Google Scholar 

  • 50.

    Behrensmeyer, A. K., Kidwell, S. M. & Gastaldo, R. A. Taphonomy and paleobiology. Paleobiology 26, 103–147 (2000).

    Google Scholar 

  • 51.

    Butler, R. J., Barrett, P. M., Nowbath, S. & Upchurch, P. Estimating the effects of sampling biases on pterosaur diversity patterns: implications for hypotheses of bird/pterosaur competitive replacement. Paleobiology 35, 432–446 (2009).

    Google Scholar 

  • 52.

    Crampton, J. S. et al. Estimating the rock volume bias in paleobiodiversity studies. Science (80-) 301, 358–360 (2003).

    ADS 
    CAS 

    Google Scholar 

  • 53.

    Kalmar, A. & Currie, D. J. The completeness of the continental fossil record and its impact on patterns of diversification. Paleobiology 36, 51–60 (2010).

    Google Scholar 

  • 54.

    Newham, E., Benson, R., Upchurch, P. & Goswami, A. Mesozoic mammaliaform diversity: the effect of sampling corrections on reconstructions of evolutionary dynamics. Palaeogeogr. Palaeoclimatol. Palaeoecol. 412, 32–44 (2014).

    Google Scholar 

  • 55.

    Prevosti, F. J. & Soibelzon, L. H. Evolution of the South American carnivores (Mammalia, Carnivora): a paleontological perspective. In Bones, Clones, and Biomes: The History and Geography of Recent Neotropical Mammals (eds. Patterson, B. D. & Costa, L. P.) 102–122 (University of Chicago Press, 2012).

  • 56.

    Carrillo, J. D., Forasiepi, A., Jaramillo, C. & Sánchez-Villagra, M. R. Neotropical mammal diversity and the Great American Biotic Interchange: spatial and temporal variation in South America’s fossil record. Front. Genet. 5, 451 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Silvestro, D., Salamin, N., Antonelli, A. & Meyer, X. Improved estimation of macroevolutionary rates from fossil data using a Bayesian framework. Paleobiology https://doi.org/10.1017/pab.2019.23 (2019).

    Article 

    Google Scholar 

  • 58.

    Condamine, F. L., Guinot, G., Benton, M. J. & Currie, P. J. Dinosaur biodiversity declined well before the asteroid impact, influenced by ecological and environmental pressures. Nat. Commun. 12, 3833 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Silvestro, D., Antonelli, A., Salamin, N. & Quental, T. B. The role of clade competition in the diversification of North American canids. Proc. Natl. Acad. Sci. 112, 8684–8689 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Alroy, J. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127, 285–311 (1996).

    Google Scholar 

  • 61.

    Moen, D. & Morlon, H. Why does diversification slow down?. Trends Ecol. Evol. 29, 190–197 (2014).

    PubMed 

    Google Scholar 

  • 62.

    Bromham, L. The genome as a life-history character: why rate of molecular evolution varies between mammal species. Philos. Trans. R. Soc. B Biol. Sci. 366, 2503–2513 (2011).

    Google Scholar 

  • 63.

    Feng, P. & Zhou, Q. Absence of relationship between mitochondrial DNA evolutionary rate and longevity in mammals except for CYTB. J. Mamm. Evol. 26, 1–7 (2019).

    Google Scholar 

  • 64.

    Gillooly, J. F., Allen, A. P., West, G. B. & Brown, J. H. The rate of DNA evolution: Effects of body size and temperature on the molecular clock. Proc. Natl. Acad. Sci. 102, 140–145 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Martin, A. P. & Palumbi, S. R. Body size, metabolic rate, generation time, and the molecular clock. Proc. Natl. Acad. Sci. 90, 4087–4091 (1993).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Barraclough, T. G., Vogler, A. P. & Harvey, P. H. Revealing the factors that promote speciation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 353, 241–249 (1998).

  • 67.

    Barraclough, T. G. & Savolainen, V. Evolutionary rates and species diversity in flowering plants. Evolution (N. Y) 55, 677–683 (2001).

    CAS 

    Google Scholar 

  • 68.

    Raia, P., Passaro, F., Fulgione, D. & Carotenuto, F. Habitat tracking, stasis and survival in Neogene large mammals. Biol. Lett. 8, 64–66 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 69.

    Viranta, S. Geographic and temporal ranges of middle and late Miocene Carnivores. J. Mammal. 84, 1267–1278 (2003).

    Google Scholar 

  • 70.

    Flynn, L. J. et al. Neogene Siwalik mammalian lineages: Species longevities, rates of change, and modes of speciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 115, 249–264 (1995).

    Google Scholar 

  • 71.

    Van Valen, L. Group selection, sex, and fossils. Evolution (N. Y) 29, 87 (1975).

    Google Scholar 

  • 72.

    Cardillo, M. Biological determinants of extinction risk: why are smaller species less vulnerable?. Anim. Conserv. 6, 63–69 (2003).

    Google Scholar 

  • 73.

    Liow, L. H. et al. Higher origination and extinction rates in larger mammals. Proc. Natl. Acad. Sci. 105, 6097–6102 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    McLain, D. K. Cope’s rules, sexual selection, and the loss of ecological plasticity. Oikos 68, 490–500 (1993).

    Google Scholar 

  • 75.

    Hautmann, M. What is macroevolution?. Palaeontology 63, 1–11 (2020).

    Google Scholar 

  • 76.

    Stanley, S. M. The general correlation between rate of speciation and rate of extinction: fortuitous causal linkages. In Causes of evolution: A paleontological perspective (eds. Ross, R. M. & Allmon, W. D.) 103–127 (University of Chicago Press, 1990).

  • 77.

    Marshall, C. R. Five palaeobiological laws needed to understand the evolution of the living biota. Nat. Ecol. Evol. 1, 0165 (2017).

    Google Scholar 

  • 78.

    Ercoli, M. D., Prevosti, F. J. & Forasiepi, A. M. The structure of the mammalian predator guild in the Santa Cruz Formation (late Early Miocene). J. Mamm. Evol. 21, 369–381 (2014).

    Google Scholar 

  • 79.

    Marshall, L. G. Evolution of the Borhyaenidae, extinct south american predaceous marsupials. Univ. Calif. Publ. Geol. Sci. 17, 1–89 (1978).

    Google Scholar 

  • 80.

    Prevosti, F. J., Forasiepi, A. M., Ercoli, M. D. & Turazzini, G. F. Paleoecology of the mammalian carnivores (Metatheria, Sparassodonta) of the Santa Cruz Formation (late Early Miocene). In Early Miocene paleobiology in Patagonia (eds. Vizcaino, S. F., Kay, R. F. & Bargo, M. S.) 173–193 (Cambridge University Press, 2012). https://doi.org/10.1017/CBO9780511667381.012.

  • 81.

    Carbone, C., Teacher, A. & Rowcliffe, J. M. The costs of carnivory. PLoS Biol. 5, e22 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Carbone, C., Mace, G. M., Roberts, S. C. & Macdonald, D. W. Energetic constraints on the diet of terrestrial carnivores. Nature 402, 286–288 (1999).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 83.

    Rovinsky, D. S., Evans, A. R., Martin, D. G. & Adams, J. W. Did the thylacine violate the costs of carnivory? Body mass and sexual dimorphism of an iconic Australian marsupial. Proc. R. Soc. B Biol. Sci. 287, 20201537 (2020).

    Google Scholar 

  • 84.

    Van Valkenburgh, B., Wang, X. & Damuth, J. Cope’s Rule, hypercarnivory, and extinction in North American canids. Science (80-) 306, 101–104 (2004).

    ADS 

    Google Scholar 

  • 85.

    Finarelli, J. A. Mechanisms behind active trends in body size evolution of the Canidae (Carnivora: Mammalia). Am. Nat. 170, 876–885 (2007).

    PubMed 

    Google Scholar 

  • 86.

    Cione, A. L. & Tonni, E. P. Chronostratigraphy and “Land-Mammal Ages” in the Cenozoic of southern South America: principles, practices, and the “Uquian” problem. J. Paleontol. 69, 135–159 (1995).

    Google Scholar 

  • 87.

    Soibelzon, L. H. & Prevosti, F. J. Los carnívoros (Carnivora, Mammalia) terrestres del Cuaternario de América del Sur. in Geomorfología Litoral i Quaternari. Homenatge a Joan Cuerda Barceló. Mon. Soc. Hist. Nat. (eds. Pons, G. X. & Vicens, D.) vol. 14 49–68 (2007).

  • 88.

    Argot, C. Evolution of South American mammalian predators (Borhyaenoidea): Anatomical and palaeobiological implications. Zool. J. Linn. Soc. 140, 487–521 (2004).

    Google Scholar 

  • 89.

    Degrange, F. J. Hind limb morphometry of terror birds (Aves, Cariamiformes, Phorusrhacidae): functional implications for substrate preferences and locomotor lifestyle. Earth Environ. Sci. Trans. R. Soc. Edinburgh 106, 257–276 (2015).

  • 90.

    Angst, D., Buffetaut, E., Lecuyer, C. & Amiot, R. A new method for estimating locomotion type in large ground birds. Palaeontology 59, 217–223 (2016).

    Google Scholar 

  • 91.

    Gurevitch, J. & Padilla, D. K. Are invasive species a major cause of extinctions?. Trends Ecol. Evol. 19, 470–474 (2004).

    PubMed 

    Google Scholar 

  • 92.

    Davis, M. A. Biotic globalization: Does competition from introduced species threaten biodiversity?. Bioscience 53, 481–489 (2003).

    Google Scholar 

  • 93.

    Prowse, T. A. A., Johnson, C. N., Bradshaw, C. J. A. & Brook, B. W. An ecological regime shift resulting from disrupted predator–prey interactions in Holocene Australia. Ecology 95, 693–702 (2014).

    PubMed 

    Google Scholar 

  • 94.

    Marshall, L. G. A new species of Lycopsis (Borhyaenidae: Marsupialia) from the La Venta Fauna (Late Miocene) of Colombia, South America. J. Paleontol. 51, 633–642 (1977).

    Google Scholar 

  • 95.

    Tomassini, R. L., Montalvo, C. I., Bargo, M. S., Vizcaíno, S. F. & Cuitiño, J. I. Sparassodonta (Metatheria) coprolites from the early-mid Miocene (Santacrucian age) of Patagonia (Argentina) with evidence of exploitation by coprophagous insects. Palaios 34, 639–651 (2019).

    ADS 

    Google Scholar 

  • 96.

    Bond, M., Cerdeño, E. & López, G. Los ungulados nativos de América del Sur. in Evolución biológica y climática de la región Pampeana durante los últimos cinco millones de años (eds. Alberdi, M. T., Leone, G. & Tonni, E. P.) 258–275 (Museo Nacional de Ciencias Naturales, 1995).

  • 97.

    Croft, D. A., Gelfo, J. N. & López, G. M. Splendid innovation: The extinct South American native ungulates. Annu. Rev. Earth Planet. Sci. 48, 259–290 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 98.

    Pascual, R. & Jaureguizar, E. O. Evolving climates and mammal faunas in cenozoic South America. J. Hum. Evol. 19, 23–60 (1990).

    Google Scholar 

  • 99.

    Patterson, B. & Pascual, R. The fossil mammal fauna of South America. Q. Rev. Biol. 43, 409–451 (1968).

    Google Scholar 

  • 100.

    Miller, K. G. et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Sci. Adv. 6, eaaz1346 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 101.

    Rae, J. W. B. et al. Atmospheric CO2 over the past 66 million years from marine archives. Annu. Rev. Earth Planet. Sci. 49, 609–641 (2021).

    ADS 
    CAS 

    Google Scholar 

  • 102.

    Insel, N., Poulsen, C. J. & Ehlers, T. A. Influence of the Andes mountains on South American moisture transport, convection, and precipitation. Clim. Dyn. 35, 1477–1492 (2010).

    Google Scholar 

  • 103.

    Garzione, C. N. et al. Tectonic evolution of the Central Andean Plateau and implications for the growth of plateaus. Annu. Rev. Earth Planet. Sci. 45, 529–559 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 104.

    Lossada, A. C. et al. Cenozoic uplift and exhumation of the Frontal Cordillera between 30° and 35° S and the influence of the subduction dynamics in the flat slab subduction context, South Central Andes. In The Evolution of the Chilean-Argentinean Andes (eds. Folguera, A. et al.) 387–409 (Springer Earth System Sciences, 2018). https://doi.org/10.1007/978-3-319-67774-3_16.

  • 105.

    Mora, A. et al. Tectonic history of the Andes and sub-Andean zones: implications for the development of the Amazon drainage basin. In Amazonia: Landscape and Species Evolution (eds. Hoorn, C. & Wesselingh, F. P.) 38–60 (Wiley-Blackwell Publishing Ltd., 2011). https://doi.org/10.1002/9781444306408.ch4.

  • 106.

    Pingel, H. et al. Late Cenozoic topographic evolution of the Eastern Cordillera and Puna Plateau margin in the southern Central Andes (NW Argentina). Earth Planet. Sci. Lett. 535, 116112 (2020).

    CAS 

    Google Scholar 

  • 107.

    Takahashi, K. & Battisti, D. S. Processes controlling the mean tropical Pacific precipitation pattern. Part I: The Andes and the Eastern Pacific ITCZ. J. Clim. 20, 3434–3451 (2007).

    ADS 

    Google Scholar 

  • 108.

    Amidon, W. H. et al. Mio-Pliocene aridity in the south-central Andes associated with Southern Hemisphere cold periods. Proc. Natl. Acad. Sci. 114, 6474–6479 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 109.

    Carrapa, B., Clementz, M. & Feng, R. Ecological and hydroclimate responses to strengthening of the Hadley circulation in South America during the Late Miocene cooling. Proc. Natl. Acad. Sci. 116, 9747–9752 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 110.

    Hartley, A. J. Andean uplift and climate change. J. Geol. Soc. Lond. 160, 7–10 (2003).

    Google Scholar 

  • 111.

    Barreda, V., Guler, V. & Palazzesi, L. Late Miocene continental and marine palynological assemblages from Patagonia. Dev. Quat. Sci. 11, 343–350 (2008).

    Google Scholar 

  • 112.

    Barreda, V. & Palazzesi, L. Patagonian vegetation turnovers during the Paleogene-early Neogene: Origin of arid-adapted floras. Bot. Rev. 73, 31–50 (2007).

    Google Scholar 

  • 113.

    Ortiz-Jaureguizar, E. & Cladera, G. A. Paleoenvironmental evolution of southern South America during the Cenozoic. J. Arid Environ. 66, 498–532 (2006).

    ADS 

    Google Scholar 

  • 114.

    Krockenberger, A. Lactation. In Marsupials (eds. Armati, P. J., Dickman, C. R. & Hume, I. D.) 108–136 (Cambridge University Press, 2006). https://doi.org/10.1017/CBO9780511541889.005.

  • 115.

    Morton, S. R., Recher, H. F., Thompson, S. D. & Braithwaite, R. W. Comments on the relative advantages of marsupial and eutherian reproduction. Am. Nat. 120, 128–134 (1982).

    Google Scholar 

  • 116.

    Thompson, S. D. Body size, duration of parental care, and the intrinsic rate of natural increase in eutherian and metatherian mammals. Oecologia 71, 201–209 (1987).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 117.

    Holloway, J. C. & Geiser, F. Seasonal changes in the thermoenergetics of the marsupial sugar glider Petaurus breviceps. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 171, 643–650 (2001).

    CAS 

    Google Scholar 

  • 118.

    Sánchez-Villagra, M. R. Why are there fewer marsupials than placentals? On the relevance of geography and physiology to evolutionary patterns of mammalian diversity and disparity. J. Mamm. Evol. 20, 279–290 (2013).

    Google Scholar 

  • 119.

    Bennett, C. V., Upchurch, P., Goin, F. J. & Goswami, A. Deep time diversity of metatherian mammals: Implications for evolutionary history and fossil-record quality. Paleobiology 44, 171–198 (2018).

    Google Scholar 

  • 120.

    Goin, F. J., Woodburne, M. O., Zimicz, A. N., Martin, G. M. & Chornogubsky, L. A Brief History of South American Metatherians: Evolutionary Contexts and Intercontinental Dispersals (Springer, 2016).

  • 121.

    Jablonski, D. Biotic interactions and macroevolution: Extensions and mismatches across scales and levels. Evolution (N. Y) 62, 715–739 (2008).

    Google Scholar 

  • 122.

    Mills, B. J. W., Belcher, C. M., Lenton, T. M. & Newton, R. J. A modeling case for high atmospheric oxygen concentrations during the Mesozoic and Cenozoic. Geology 44, 1023–1026 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 123.

    Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science (80-) 369, 1383–1387 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 124.

    Silvestro, D., Salamin, N. & Schnitzler, J. PyRate: A new program to estimate speciation and extinction rates from incomplete fossil data. Methods Ecol. Evol. 5, 1126–1131 (2014).

    Google Scholar 

  • 125.

    Green, P. J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711–732 (1995).

    MathSciNet 
    MATH 

    Google Scholar 

  • 126.

    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Hotspots for social and ecological impacts from freshwater stress and storage loss

    MIT Energy Initiative launches the Future Energy Systems Center