in

The NEON Daily Isotopic Composition of Environmental Exchanges Dataset

  • Chai et al. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements. J. Hydrol. 523, 67–78 (2015).

    Article 

    Google Scholar 

  • Brooks et al. Stable isotope estimates of evaporation: Inflow and water residence time for lakes across the United States as a tool for national lake water quality assessments. Limnol. Oceanogr. 59, 2150–2165 (2014).

    Article 

    Google Scholar 

  • Good, S. P., Noone, D. & Bowen, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 349, 175–177 (2015).

    CAS 
    Article 

    Google Scholar 

  • Gupta, A., Gerber, E. P. & Lauritzen, P. H. Numerical impacts on tracer transport: A proposed intercomparison test of atmospheric general circulation models. Quart. J. Roy. Meteor. Soc. 146, 3937–3964 (2020).

    Article 

    Google Scholar 

  • Kanner, L. C., Buenning, N. H., Stott, L. D., Timmermann, A. & Noone, D. The role of soil processes in d18O. Global Biogeochem. Cycles 28, 239–252 (2014).

    CAS 
    Article 

    Google Scholar 

  • Remondi, F., Kircher, J. W., Burlando, P. & Fatichi, S. Water flux tracking with a distributed hydrologic model to quantify controls on the spatio-temporal variability of transit time distributions. Water Resour. Res. 54, 3081–3099 (2018).

    Article 

    Google Scholar 

  • Abbott, B. W. et al. Using multi-tracer inference to move beyond single catchment ecohydrology. Earth-Sci. Rev. 160, 19–42 (2016).

    Article 

    Google Scholar 

  • Krause, P., Boyle, D. P. & Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. in Geosci. 5, 89–97 (2005).

    Article 

    Google Scholar 

  • Bowen, G. J. & Good, S. P. Incorporating water isotopes in hydrological and water resource investigations. Wiley Interdiscip. Rev.: Water 2, 107–119 (2015).

    Article 

    Google Scholar 

  • McGuire, K. J. & McDonnell, J. J. A review and evaluation of catchment transit time modeling. J. Hydrol. 330, 543–563 (2006).

    Article 

    Google Scholar 

  • Sprenger, M. et al. The demographics of water: A review of water ages in the critical zone. Rev. Geophys. 57, 800–834 (2019).

    Article 

    Google Scholar 

  • Turnadge, C. & Smerdon, B. D. A review of methods for modelling environmental tracers in groundwater: Advantages of tracer concentration simulation. J. Hydrol. 519, 3674–3689 (2014).

    CAS 
    Article 

    Google Scholar 

  • Fiorella, R. et al. Calibration Strategies for Detecting Macroscale Patterns in NEON Atmospheric Carbon Isotope Observations. J. Geophys. Res. Biogeosci. 126 (2021).

  • Xiao, W., Wei, Z. & Wen, X. Evapotranspiration partitioning at the ecosystem scale using the stable isotope method—A review. Agric For Meteorol. 263, 346–361 (2018).

    Article 

    Google Scholar 

  • Wu, Y. et al. Stable isotope measurements show increases in corn water use efficiency under deficit irrigation. Sci Rep 8, 14113 (2018).

    Article 

    Google Scholar 

  • Al-Oqaili, F., Good, S. P., Frost, K. & Higgins, C. W. Differences in soil evaporation between row and interrow positions in furrowed agricultural fields. Vadose Zone J. 19, e20086 (2020).

    CAS 
    Article 

    Google Scholar 

  • Bowen, G. J., Cai, Z., Fiorella, R. P. & Putman, A. L. Isotopes in the water cycle: Regional- to global-scale patterns and applications. Annu. Rev. Earth Planet. Sci. 47, 453–479 (2019).

    CAS 
    Article 

    Google Scholar 

  • Lu, X. et al. Partitioning of evapotranspiration using a stable isotope technique in an arid and high temperature agricultural production system. Agric. Water Manag. 179, 103–109 (2017).

    Article 

    Google Scholar 

  • Wieser, G. et al. Stable water use efficiency under climate change of three sympatric conifer species at the alpine treeline. Front. Plant Sci. 7, 799 (2016).

    Article 

    Google Scholar 

  • Pataki, D. E. et al. The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochem. Cycles, 17 (2003).

  • Miller, J. B., & Tans, P. P., Calculating isotopic fractionation from atmospheric measurements at various scales. Tellus, 55 (2003).

  • Finkenbiner, C. E., Good, S. P., Allen, S. T., Fiorella, R. P. & Bowen, G. J. A statistical method for generating temporally downscaled geochemical tracers in precipitation. J. Hydrometeorol. 22 (2021).

  • NEON (National Ecological Observatory Network). Precipitation (DP1.00006.001), RELEASE-2022. https://doi.org/10.48443/6wkc-1p05. Dataset accessed from https://data.neonscience.org on May 12, 2022.

  • Lunch, C. K. & Laney, C. M. NEON (National Ecological Observatory Network). neonUtilities: Utilities for working with NEON data. R package version 1.3.4. https://github.com/NEONScience/NEON-utilities (2020).

  • Lee, R. and S. Weintraub. NEON User Guide to Stable Isotopes in Precipitation (NEON.DPI.00038) Version B. NEON (National Ecological Observatory Network). (2021).

  • IAEA: Global network of isotopes in precipitation. https://www.iaea.org/services/networks/gnip 2020.

  • Allen, S. T., Kirchner, J. W. & Goldsmith, G. R. Predicting spatial patterns in precipitation isotope (δ2H and δ18O) seasonality using sinusoidal isoscapes. Geophys. Res. 45, 4859–4868 (2018).

    Google Scholar 

  • Craig, H. Isotopic variations in meteoric waters. Science 133, 1702–1703 (1961).

    CAS 
    Article 

    Google Scholar 

  • Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).

    Article 

    Google Scholar 

  • Sklar, A. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris. 8, 229–231 (1959).

    MATH 

    Google Scholar 

  • NEON (National Ecological Observatory Network). Bundled data products – eddy covariance (DP4.00200.001). https://data.neonscience.org (2021).

  • Good, S. P., Soderberg, K., Wang, L., & Caylor, K. K. Uncertainties in the assessment of the isotopic composition of surface fluxes: A direct comparison of techniques using laser‐based water vapor isotope analyzers. J. Geophys. Res. Atmos. 177 (2012).

  • Wutzler, T. et al. Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosci. 15, 5015–5030 (2018).

    CAS 
    Article 

    Google Scholar 

  • Zobitz, J. M., Keener, J. P., Schnyder, H. & Bowling, D. R. Sensitivity analysis and quantification of uncertainty for isotopic mixing relationships in carbon cycle research. Agric For Meteorol. 136, 56–75 (2006).

    Article 

    Google Scholar 

  • Wehr, R. & Saleska, S. R. An improved isotopic method for partitioning net ecosystem-atmosphere CO2 exchange. Agric For Meteorol. 214, 515–531 (2015).

    Article 

    Google Scholar 

  • Bailey, A., Noone, D., Berkelhammer, M., Steen-Larsen, H. C. & Sato, P. The stability and calibration of water vapor isotope ratio measurements during long-term deployments. Atmos. Meas. Tech. 8, 4521–4538 (2015).

    CAS 
    Article 

    Google Scholar 

  • Rambo, J., Lai, C., Farlin, J., Schroeder, M. & Bible, K. Vapor isotope ratios using off-axis cavity-enhanced absorption spectroscopy. J Atmos. Ocean Technol. 28, 1448–1457 (2011).

    Article 

    Google Scholar 

  • Finkenbiner, C. The National Ecological Observation Network Daily Isotopic Composition of Environmental Exchanges (NEON-DICEE) Dataset, HydroShare, https://doi.org/10.4211/hs.e74edc35d45441579d51286ea01b519f (2022).


  • Source: Ecology - nature.com

    Viscotoxin and lectin content in foliage and fruit of Viscum album L. on the main host trees of Hyrcanian forests

    Major biodiversity summit will go ahead in Canada not China: what scientists think