in

The NEON Daily Isotopic Composition of Environmental Exchanges Dataset

  • Chai et al. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements. J. Hydrol. 523, 67–78 (2015).

    Article 

    Google Scholar 

  • Brooks et al. Stable isotope estimates of evaporation: Inflow and water residence time for lakes across the United States as a tool for national lake water quality assessments. Limnol. Oceanogr. 59, 2150–2165 (2014).

    Article 

    Google Scholar 

  • Good, S. P., Noone, D. & Bowen, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 349, 175–177 (2015).

    CAS 
    Article 

    Google Scholar 

  • Gupta, A., Gerber, E. P. & Lauritzen, P. H. Numerical impacts on tracer transport: A proposed intercomparison test of atmospheric general circulation models. Quart. J. Roy. Meteor. Soc. 146, 3937–3964 (2020).

    Article 

    Google Scholar 

  • Kanner, L. C., Buenning, N. H., Stott, L. D., Timmermann, A. & Noone, D. The role of soil processes in d18O. Global Biogeochem. Cycles 28, 239–252 (2014).

    CAS 
    Article 

    Google Scholar 

  • Remondi, F., Kircher, J. W., Burlando, P. & Fatichi, S. Water flux tracking with a distributed hydrologic model to quantify controls on the spatio-temporal variability of transit time distributions. Water Resour. Res. 54, 3081–3099 (2018).

    Article 

    Google Scholar 

  • Abbott, B. W. et al. Using multi-tracer inference to move beyond single catchment ecohydrology. Earth-Sci. Rev. 160, 19–42 (2016).

    Article 

    Google Scholar 

  • Krause, P., Boyle, D. P. & Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. in Geosci. 5, 89–97 (2005).

    Article 

    Google Scholar 

  • Bowen, G. J. & Good, S. P. Incorporating water isotopes in hydrological and water resource investigations. Wiley Interdiscip. Rev.: Water 2, 107–119 (2015).

    Article 

    Google Scholar 

  • McGuire, K. J. & McDonnell, J. J. A review and evaluation of catchment transit time modeling. J. Hydrol. 330, 543–563 (2006).

    Article 

    Google Scholar 

  • Sprenger, M. et al. The demographics of water: A review of water ages in the critical zone. Rev. Geophys. 57, 800–834 (2019).

    Article 

    Google Scholar 

  • Turnadge, C. & Smerdon, B. D. A review of methods for modelling environmental tracers in groundwater: Advantages of tracer concentration simulation. J. Hydrol. 519, 3674–3689 (2014).

    CAS 
    Article 

    Google Scholar 

  • Fiorella, R. et al. Calibration Strategies for Detecting Macroscale Patterns in NEON Atmospheric Carbon Isotope Observations. J. Geophys. Res. Biogeosci. 126 (2021).

  • Xiao, W., Wei, Z. & Wen, X. Evapotranspiration partitioning at the ecosystem scale using the stable isotope method—A review. Agric For Meteorol. 263, 346–361 (2018).

    Article 

    Google Scholar 

  • Wu, Y. et al. Stable isotope measurements show increases in corn water use efficiency under deficit irrigation. Sci Rep 8, 14113 (2018).

    Article 

    Google Scholar 

  • Al-Oqaili, F., Good, S. P., Frost, K. & Higgins, C. W. Differences in soil evaporation between row and interrow positions in furrowed agricultural fields. Vadose Zone J. 19, e20086 (2020).

    CAS 
    Article 

    Google Scholar 

  • Bowen, G. J., Cai, Z., Fiorella, R. P. & Putman, A. L. Isotopes in the water cycle: Regional- to global-scale patterns and applications. Annu. Rev. Earth Planet. Sci. 47, 453–479 (2019).

    CAS 
    Article 

    Google Scholar 

  • Lu, X. et al. Partitioning of evapotranspiration using a stable isotope technique in an arid and high temperature agricultural production system. Agric. Water Manag. 179, 103–109 (2017).

    Article 

    Google Scholar 

  • Wieser, G. et al. Stable water use efficiency under climate change of three sympatric conifer species at the alpine treeline. Front. Plant Sci. 7, 799 (2016).

    Article 

    Google Scholar 

  • Pataki, D. E. et al. The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochem. Cycles, 17 (2003).

  • Miller, J. B., & Tans, P. P., Calculating isotopic fractionation from atmospheric measurements at various scales. Tellus, 55 (2003).

  • Finkenbiner, C. E., Good, S. P., Allen, S. T., Fiorella, R. P. & Bowen, G. J. A statistical method for generating temporally downscaled geochemical tracers in precipitation. J. Hydrometeorol. 22 (2021).

  • NEON (National Ecological Observatory Network). Precipitation (DP1.00006.001), RELEASE-2022. https://doi.org/10.48443/6wkc-1p05. Dataset accessed from https://data.neonscience.org on May 12, 2022.

  • Lunch, C. K. & Laney, C. M. NEON (National Ecological Observatory Network). neonUtilities: Utilities for working with NEON data. R package version 1.3.4. https://github.com/NEONScience/NEON-utilities (2020).

  • Lee, R. and S. Weintraub. NEON User Guide to Stable Isotopes in Precipitation (NEON.DPI.00038) Version B. NEON (National Ecological Observatory Network). (2021).

  • IAEA: Global network of isotopes in precipitation. https://www.iaea.org/services/networks/gnip 2020.

  • Allen, S. T., Kirchner, J. W. & Goldsmith, G. R. Predicting spatial patterns in precipitation isotope (δ2H and δ18O) seasonality using sinusoidal isoscapes. Geophys. Res. 45, 4859–4868 (2018).

    Google Scholar 

  • Craig, H. Isotopic variations in meteoric waters. Science 133, 1702–1703 (1961).

    CAS 
    Article 

    Google Scholar 

  • Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).

    Article 

    Google Scholar 

  • Sklar, A. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris. 8, 229–231 (1959).

    MATH 

    Google Scholar 

  • NEON (National Ecological Observatory Network). Bundled data products – eddy covariance (DP4.00200.001). https://data.neonscience.org (2021).

  • Good, S. P., Soderberg, K., Wang, L., & Caylor, K. K. Uncertainties in the assessment of the isotopic composition of surface fluxes: A direct comparison of techniques using laser‐based water vapor isotope analyzers. J. Geophys. Res. Atmos. 177 (2012).

  • Wutzler, T. et al. Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosci. 15, 5015–5030 (2018).

    CAS 
    Article 

    Google Scholar 

  • Zobitz, J. M., Keener, J. P., Schnyder, H. & Bowling, D. R. Sensitivity analysis and quantification of uncertainty for isotopic mixing relationships in carbon cycle research. Agric For Meteorol. 136, 56–75 (2006).

    Article 

    Google Scholar 

  • Wehr, R. & Saleska, S. R. An improved isotopic method for partitioning net ecosystem-atmosphere CO2 exchange. Agric For Meteorol. 214, 515–531 (2015).

    Article 

    Google Scholar 

  • Bailey, A., Noone, D., Berkelhammer, M., Steen-Larsen, H. C. & Sato, P. The stability and calibration of water vapor isotope ratio measurements during long-term deployments. Atmos. Meas. Tech. 8, 4521–4538 (2015).

    CAS 
    Article 

    Google Scholar 

  • Rambo, J., Lai, C., Farlin, J., Schroeder, M. & Bible, K. Vapor isotope ratios using off-axis cavity-enhanced absorption spectroscopy. J Atmos. Ocean Technol. 28, 1448–1457 (2011).

    Article 

    Google Scholar 

  • Finkenbiner, C. The National Ecological Observation Network Daily Isotopic Composition of Environmental Exchanges (NEON-DICEE) Dataset, HydroShare, https://doi.org/10.4211/hs.e74edc35d45441579d51286ea01b519f (2022).

  • A framework to understand the role of biological time in responses to fluctuating climate drivers

    Waste-derived biochar for water pollution control and sustainable development