Laity JJ. Deserts and desert environments. John Wiley & Sons; UK, 2009.
Huang J, Yu H, Guan X, Wang G, Guo R. Accelerated dryland expansion under climate change. Nat Clim Chang. 2015;6:166–71.
Google Scholar
Berdugo M, Delgado-Baquerizo M, Soliveres S, Hernández-Clemente R, Zhao Y, Gaitán JJ, et al. Global ecosystem thresholds driven by aridity. Science. 2020;367:787–90.
Google Scholar
Danin A. Plant adaptations to environmental stresses in desert dunes. In: Cloudsley-Thompson J, Punzo F, editors. Adaptations of desert organisms. Plant of desert dunes. Springer; Verlag Berlin Heidelberg, 1996.
Makhalanyane TP, Valverde A, Gunnigle E, Frossard A, Ramond J-B, Cowan DA. Microbial ecology of hot desert edaphic systems. FEMS Microbiol Rev. 2015;39:203–21.
Google Scholar
Fierer N, Leff JWJ, Adams BJ, Nielsen UN, Bates ST, Lauber CL, et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci USA. 2012;109:21390–5.
Google Scholar
Ronca S, Ramond J-BB, Jones BE, Seely M, Cowan DA. Namib Desert dune/interdune transects exhibit habitat-specific edaphic bacterial communities. Front Microbiol. 2015;6:1–12.
Google Scholar
Pointing SB, Belnap J. Microbial colonization and controls in dryland systems. Nat Rev Microbiol. 2012;10:551–62.
Google Scholar
Noy-Meir I. Desert ecosystems: higher trophic levels. Annu Rev Ecol Syst. 1974;5:195–214.
Google Scholar
Danin A. Plants of desert dunes. In: Cloudsley-Thompson J, editor. Adaptations of desert organisms. Springer; Verlag Berlin Heidelberg, 2000.
Roth-Nebelsick A, Ebner M, Miranda T, Gottschalk V, Voigt D, Gorb S, et al. Leaf surface structures enable the endemic Namib Desert grass Stipagrostis sabulicola to irrigate itself with fog water. J R Soc Interface. 2012;9:1965–74.
Google Scholar
Ebner M, Miranda T, Roth-Nebelsick A. Efficient fog harvesting by Stipagrostis sabulicola (Namib dune bushman grass). J Arid Environ. 2011;75:524–31.
Google Scholar
Cartwright J. Ecological islands: conserving biodiversity hotspots in a changing climate. Front Ecol Environ. 2019;17:fee.2058.
Google Scholar
André HM, Noti MI, Jacobson KM. The soil microarthropods of the Namib Desert: a patchy mosaic. J African Zool. 1997;111:499–517.
Marasco R, Mosqueira MJ, Fusi M, Ramond J, Merlino G, Booth JM, et al. Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome. 2018;6:215.
Google Scholar
Brown LK, George TS, Neugebauer K, White PJ. The rhizosheath—a potential trait for future agricultural sustainability occurs in orders throughout the angiosperms. Plant Soil. 2017;418:115–28.
Google Scholar
Pang J, Ryan MH, Siddique KHMM, Simpson RJ. Unwrapping the rhizosheath. Plant Soil. 2017;418:129–39.
Google Scholar
Marasco R, Fusi M, Mosqueira M, Booth JM, Rossi F, Cardinale M, et al. Rhizosheath–root system changes exopolysaccharide content but stabilizes bacterial community across contrasting seasons in a desert environment. Environ Microbiome. 2022;17:14.
Google Scholar
Moreno-Espíndola IP, Rivera-Becerril F, de Jesús Ferrara-Guerrero M, De León-González F. Role of root-hairs and hyphae in adhesion of sand particles. Soil Biol Biochem. 2007;39:2520–6.
Google Scholar
Wullstein LHH, Pratt SAA. Scanning electron microscopy of rhizosheaths of Oryzopsis hymenoides. Am J Bot. 1981;68:408–19.
Google Scholar
Young IM. Variation in moisture contents between bulk soil and the rhizosheath of wheat (Triticum aestivum L. cv. Wembley). New Phytol. 1995;130:135–9.
Google Scholar
Ashraf M, Hasnain S, Berge O, Campus Q. Effect of exo-polysaccharides producing bacterial inoculation on growth of roots of wheat (Triticum aestivum L.) plants grown in a salt-affected soil. Int J Environ Sci Technol. 2006;3:45–53.
Google Scholar
George TS, Brown LK, Ramsay L, White PJ, Newton AC, Bengough AG, et al. Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare). New Phytol. 2014;203:195–205.
Google Scholar
Ndour PMS, Heulin T, Achouak W, Laplaze L, Cournac L. The rhizosheath: from desert plants adaptation to crop breeding. Plant Soil. 2020;456:1–13.
Google Scholar
Othman AA, Amer WM, Fayez M, Monib M, Hegazi NA. Biodiversity of diazotrophs associated to the plant cover of north sinai deserts. Arch Agron Soil Sci. 2003;49:683–705.
Google Scholar
Bergmann D, Zehfus M, Zierer L, Smith B, Gabel M. Grass rhizosheaths: associated bacterial communities and potential for nitrogen fixation. West North Am Nat. 2009;69:105–14.
Google Scholar
Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, et al. A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS ONE. 2012;7:e48479.
Google Scholar
Marasco R, Mapelli F, Rolli E, Mosqueira MJ, Fusi M, Bariselli P, et al. Salicornia strobilacea (synonym of Halocnemum strobilaceum) grown under different tidal regimes selects rhizosphere bacteria capable of promoting plant growth. Front Microbiol. 2016;7:1–11.
Google Scholar
Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, et al. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol. 2015;17:316–31.
Google Scholar
Alsharif W, Saad MM, Hirt H. Desert microbes for boosting sustainable agriculture in extreme environments. Front Microbiol. 2020;11:1666.
Zhang Y, Du H, Xu F, Ding Y, Gui Y, Zhang J, et al. Root-bacteria associations boost rhizosheath formation in moderately dry soil through ethylene responses. Plant Physiol. 2020;183:780–92.
Google Scholar
Soussi A, Ferjani R, Marasco R, Guesmi A, Cherif H, Rolli E, et al. Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential. Plant Soil. 2016;405:357–70.
Google Scholar
Livingston G, Matias M, Calcagno V, Barbera C, Combe M, Leibold MA, et al. Competition-colonization dynamics in experimental bacterial metacommunities. Nat Commun. 2012;3:1–8.
Google Scholar
Smith GR, Steidinger BS, Bruns TD, Peay KG. Competition–colonization tradeoffs structure fungal diversity. ISME J. 2018;12:1758–67.
Google Scholar
Seely MK. The Namib dune desert: an unusual ecosystem. J Arid Environ. 1978;1:117–28.
Google Scholar
Klaassen E, Craven P. Checklist of grasses in Namibia. SABONET; Pretoria & Windhoek, 2014. (Produced by National Botanical Research Institute Private Bag 13184).
Neilson JW, Califf K, Cardona C, Copeland A, van Treuren W, Josephson KL, et al. Significant impacts of increasing aridity on the arid soil microbiome. mSystems. 2017;2:1–15.
Google Scholar
Darwin C. On the origin of species. London: Routledge; 1859.
Gunnigle E, Frossard A, Ramond J-B, Guerrero L, Seely M, Cowan DA. Diel-scale temporal dynamics recorded for bacterial groups in Namib Desert soil. Sci Rep. 2017;7:40189.
Google Scholar
Wickham H. ggplot2: Elegant graphics for data analysis. Media. Springer; New York, NY 2016.
RC-Team. R: A language and environment for statistical computing (Version 3.5. 2, R foundation for statistical computing, Vienna, Austria, 2018). R Foundation for Statistical Computing; 2019.
Anderson MMJJ, Gorley RNRN, Clarke KRR. PERMANOVA + for PRIMER: guide to software and statistical methods; PRIMER-E. Plymouth, UK: PRIMER-E Ltd.; 2008.
Cherif H, Marasco R, Rolli E, Ferjani R, Fusi M, Soussi A, et al. Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought. Environ Microbiol Rep. 2015;7:668–78.
Google Scholar
Lee KC, Caruso T, Archer SDJ, Gillman LN, Lau MCY, Craig Cary S, et al. Stochastic and deterministic effects of a moisture gradient on soil microbial communities in the McMurdo dry valleys of Antarctica. Front Microbiol. 2018;9:1–12.
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6.
Google Scholar
Koljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2014;22:5271–7.
Google Scholar
Ramette A. Multivariate analyses in microbial ecology. FEMS Microbiol Ecol. 2007;62:142–60.
Google Scholar
Clarke KR, Gorley RN. PRIMER v7: user manual/tutorial. Plymouth, UK: PRIMER-E; 2015.
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara B, et al. The vegan R package: community ecology. 2013:0–291
Wang Y, Naumann U, Wright ST, Warton DI. mvabund—an R package for model-based analysis of multivariate abundance data. Methods Ecol Evol. 2012;3:471–4.
Google Scholar
Legendre P. Interpreting the replacement and richness difference components of beta diversity. Glob Ecol Biogeogr. 2014;23:1324–34.
Google Scholar
Dray S, Blanchet G, Borcard D, Guenard G, Jombart T, Larocque G, et al. Package ‘adespatial’. R package version. 2018.
Hammer Ø, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4:1–9.
Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 2016;10:1669–81.
Google Scholar
Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50.
Google Scholar
Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. Third International AAAI Conference on Weblogs and Social Media. 2009;8:361–2.
Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012;6:343–51.
Google Scholar
Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech Theory Exp. 2008;2008:P10008.
Google Scholar
de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, et al. Soil bacterial networks are less stable under drought than fungal networks. Nat Commun. 2018;9:3033.
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Google Scholar
Andrews S. FastQC: a quality control tool for high throughput sequence data. Cambridge, United Kingdom: Babraham Bioinformatics, Babraham Institute; 2010.
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–4.
Google Scholar
Rodriguez-R LM, Gunturu S, Tiedje JM, Cole JR, Konstantinidis KT. Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. mSystems. 2018;3:1–9.
Google Scholar
Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:257.
Google Scholar
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.
Google Scholar
Mikheenko A, Saveliev V, Gurevich A. MetaQUAST: evaluation of metagenome assemblies. Bioinformatics. 2016;32:1088–90.
Google Scholar
Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.
Google Scholar
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
Google Scholar
Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47:W81–7.
Google Scholar
Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101.
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.
Google Scholar
Vigani G, Rolli E, Marasco R, Dell’Orto M, Michoud G, Soussi A, et al. Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H+-pumping pyrophosphatase in pepper plants. Environ Microbiol. 2019;21:3212–28.
Google Scholar
Al-Hosni K, Shahzad R, Khan AL, Muhammad Imran Q, Al Harrasi A, Al Rawahi A, et al. Preussia sp. BSL-10 producing nitric oxide, gibberellins, and indole acetic acid and improving rice plant growth. J Plant Interact. 2018;13:112–8.
Google Scholar
Sen D, Paul K, Saha C, Mukherjee G, Nag M, Ghosh S, et al. A unique life-strategy of an endophytic yeast Rhodotorula mucilaginosa JGTA-S1—a comparative genomics viewpoint. DNA Res. 2019;26:131–46.
Google Scholar
Johnson JM, Ludwig A, Furch ACU, Mithöfer A, Scholz S, Reichelt M, et al. The beneficial root-colonizing fungus Mortierella hyalina promotes the aerial growth of Arabidopsis and activates calcium-dependent responses that restrict Alternaria brassicae–induced disease development in roots. Mol Plant-Microbe Interact. 2019;32:351–63.
Google Scholar
van Dam NM, Bouwmeester HJ. Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci. 2016;21:256–65.
Google Scholar
Zeng Y, Charkowski AO. The role of ATP-binding cassette transporters in bacterial phytopathogenesis. Phytopathology®. 2021;111:600–10.
Google Scholar
Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, et al. Function and functional redundancy in microbial systems. Nat Ecol Evol. 2018;2:936–43.
Google Scholar
Balskus EP, Walsh CT. The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science. 2010;329:1653–6.
Google Scholar
Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18:67–83.
Google Scholar
Smith VH. Effects of resource supplies on the structure and function of microbial communities. Antonie Van Leeuwenhoek. 2002;81:99–106.
Google Scholar
Albalasmeh AA, Ghezzehei TA. Interplay between soil drying and root exudation in rhizosheath development. Plant Soil. 2014;374:739–51.
Google Scholar
Devitt DA, Smith SD. Root channel macropores enhance downward movement of water in a Mojave Desert ecosystem. J Arid Environ. 2002;50:99–108.
Google Scholar
Othman AA, Amer WM, Fayez M, Hegazi NA. Rhizosheath of sinai desert plants is a potential repository for associative diazotrophs. Microbiol Res. 2004;159:285–93.
Google Scholar
Naseem H, Ahsan M, Shahid MA, Khan N. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J Basic Microbiol. 2018;58:1009–22.
Google Scholar
Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, et al. Core microbiomes for sustainable agroecosystems. Nat Plants. 2018;4:247–57.
Google Scholar
Banerjee S, Schlaeppi K, van der Heijden MGAA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.
Google Scholar
Agler MT, Ruhe J, Kroll S, Morhenn C, Kim S-TT, Weigel D, et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 2016;14:1–31.
Google Scholar
Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol. 2020;4:210–20.
Google Scholar
Hassani MA, Durán P, Hacquard S. Microbial interactions within the plant holobiont. Microbiome. 2018;6:58.
Google Scholar
Lopez BR, Bacilio M. Weathering and soil formation in hot, dry environments mediated by plant–microbe interactions. Biol Fertil Soils. 2020;56:447–59.
Google Scholar
Hernandez DJ, David AS, Menges ES, Searcy CA, Afkhami ME. Environmental stress destabilizes microbial networks. ISME J. 2021;15:1722–34.
Google Scholar
Yuan MM, Guo X, Wu L, Zhang Y, Xiao N, Ning D, et al. Climate warming enhances microbial network complexity and stability. Nat Clim Chang. 2021;11:343–8.
Google Scholar
Safronova VI, Kuznetsova IG, Sazanova AL, Belimov AA, Andronov EE, Chirak ER, et al. Microvirga ossetica sp. nov., a species of rhizobia isolated from root nodules of the legume species Vicia alpestris Steven. Int J Syst Evol Microbiol. 2017;67:94–100.
Google Scholar
Jiménez-Gómez A, Saati-Santamaría Z, Igual J, Rivas R, Mateos P, García-Fraile P. Genome insights into the novel species Microvirga brassicacearum, a rapeseed endophyte with biotechnological potential. Microorganisms. 2019;7:354.
Google Scholar
Liu T, Ye N, Wang X, Das D, Tan Y, You X, et al. Drought stress and plant ecotype drive microbiome recruitment in switchgrass rhizosheath. J Integr Plant Biol. 2021;63:1753–74.
Blouin M. Chemical communication: an evidence for co-evolution between plants and soil organisms. Appl Soil Ecol. 2018;123:409–15.
Google Scholar
Sarrocco S, Diquattro S, Baroncelli R, Cimmino A, Evidente A, Vannacci G, et al. A polyphasic contribution to the knowledge of Auxarthron (Onygenaceae). Mycol Prog. 2015;14:112.
Macías-Rubalcava ML, Sánchez-Fernández RE. Secondary metabolites of endophytic Xylaria species with potential applications in medicine and agriculture. World J Microbiol Biotechnol. 2017;33:15.
Zhang K, Bonito G, Hsu C, Hameed K, Vilgalys R, Liao H-L. Mortierella elongata increases plant biomass among non-leguminous crop species. Agronomy. 2020;10:754.
Google Scholar
Kobayashi DY, Crouch JA. Bacterial/fungal interactions: from pathogens to mutualistic endosymbionts. Annu Rev Phytopathol. 2009;47:63–82.
Google Scholar
Asmelash F, Bekele T, Birhane E. The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Front Microbiol. 2016;7:1–15.
Google Scholar
Kohlmeier S, Smits THM, Ford RM, Keel C, Harms H, Wick LY. Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol. 2005;39:4640–6.
Google Scholar
Warmink JA, Nazir R, Corten B, van Elsas JD. Hitchhikers on the fungal highway: the helper effect for bacterial migration via fungal hyphae. Soil Biol Biochem. 2011;43:760–5.
Google Scholar
Booth JM, Fusi M, Marasco R, Michoud G, Fodelianakis S, Merlino G, et al. The role of fungi in heterogeneous sediment microbial networks. Sci Rep. 2019;9:7537.
Google Scholar
Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, et al. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev. 2018;42:335–52.
Google Scholar
Simon A, Hervé V, Al-Dourobi A, Verrecchia E, Junier P. An in situ inventory of fungi and their associated migrating bacteria in forest soils using fungal highway columns. FEMS Microbiol Ecol. 2017;93:fiw217.
Google Scholar
Faust K, Raes J. CoNet app: inference of biological association networks using Cytoscape. F1000Research. 2016;5:1519.
Google Scholar
Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012;6:1007–17.
Google Scholar
Zablocki O, Adriaenssens EM, Cowan D. Diversity and ecology of viruses in hyperarid desert soils. Appl Environ Microbiol. 2016;82:770–7.
Google Scholar
Van Goethem MW, Swenson TL, Trubl G, Roux S, Northen TR. Characteristics of wetting-induced bacteriophage blooms in biological soil crust. MBio. 2019;10:e02287–19.
Lambers H, Mougel C, Jaillard B, Hinsinger P. Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil. 2009;321:83–115.
Google Scholar
Ghoul M, Mitri S. The ecology and evolution of microbial competition. Trends Microbiol. 2016;24:833–45.
Google Scholar
Schlatter DC, Kinkel LL. Antibiotics: conflict and communication in microbial communities. Microbe Mag. 2014;9:282–8.
Google Scholar
Source: Ecology - nature.com