in

The pulsating soft coral Xenia umbellata shows high resistance to warming when nitrate concentrations are low

  • Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37. https://doi.org/10.1146/annurev-marine-041911-111611 (2012).

    ADS 
    Article 

    Google Scholar 

  • Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).

    Article 

    Google Scholar 

  • Weis, V. M. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol. 211, 3059–3066 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fitt, W., Brown, B., Warner, M. & Dunne, R. Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20, 51–65. https://doi.org/10.1007/s003380100146 (2001).

    Article 

    Google Scholar 

  • Fujise, L., Yamashita, H., Suzuki, G. & Koike, K. Expulsion of zooxanthellae (Symbiodinium) from several species of scleractinian corals: comparison under non-stress conditions and thermal stress conditions. Galaxea, JCRS 15, 29–36. https://doi.org/10.3755/galaxea.15.29 (2013).

    Article 

    Google Scholar 

  • Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. PNAS USA https://doi.org/10.1073/pnas.2022653118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570-2580.e6. https://doi.org/10.1016/j.cub.2018.07.008 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wooldridge, S. A. Breakdown of the coral-algae symbiosis. Towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae. Biogeosciences 10, 1647–1658 (2013).

    ADS 
    Article 

    Google Scholar 

  • Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 160–164 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Peña-García, D., Ladwig, N., Turki, A. J. & Mudarris, M. S. Input and dispersion of nutrients from the Jeddah Metropolitan Area, Red Sea. Mar. Pollut. Bull. 80, 41–51. https://doi.org/10.1016/j.marpolbul.2014.01.052 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral–Symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ferrier-Pagés, C., Gattuso, J.-P., Dallot, S. & Jaubert, J. Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19, 103–113. https://doi.org/10.1007/s003380000078 (2000).

    Article 

    Google Scholar 

  • Rosset, S., Wiedenmann, J., Reed, A. J. & D’angelo, C. Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Mar. Pollut. Bull. 118, 180–187. https://doi.org/10.1016/j.marpolbul.2017.02.044 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patterson, K. et al. Distinct signalling pathways and transcriptome response signatures differentiate ammonium- and nitrate-supplied plants. Plant Cell Environ. 33, 1486–1501 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ezzat, L., Maguer, J.-F., Grover, R. & Ferrier-Pagès, C. New insights into carbon acquisition and exchanges within the coral–dinoflagellate symbiosis under NH 4+ and NO 3− supply. Proc. R. Soc. B. 282, 20150610 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Guan, Y., Hohn, S., Wild, C. & Merico, A. Vulnerability of global coral reef habitat suitability to ocean warming, acidification and eutrophication. Glob. Change Biol. 26, 5646–5660 (2020).

    ADS 
    Article 

    Google Scholar 

  • Roff, G. & Mumby, P. J. Global disparity in the resilience of coral reefs. Trends Ecol. Evol. 27, 404–413 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Knowlton, N. & Jackson, J. B. C. Shifting baselines, local impacts, and global change on coral reefs. PLoS Biol. 6, e54 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vollstedt, S., Xiang, N., Simancas-Giraldo, S. M. & Wild, C. Organic eutrophication increases resistance of the pulsating soft coral Xenia umbellata to warming. PeerJ 8, e9182 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fabricius, K. E., Cséke, S., Humphrey, C. & De’ath, G. Does trophic status enhance or reduce the thermal tolerance of scleractinian corals? A review, experiment and conceptual framework. PloS one 8, e54399 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cardini, U. et al. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proc. Biol. Sci. 282, 20152257 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Baker, D. M., Freeman, C. J., Wong, J. C. Y., Fogel, M. L. & Knowlton, N. Climate change promotes parasitism in a coral symbiosis. ISME J. 12, 921–930. https://doi.org/10.1038/s41396-018-0046-8 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Barros, F. et al. Unravelling the different causes of nitrate and ammonium effects on coral bleaching. Sci. Rep. 10, 11975 (2020).

    ADS 
    Article 

    Google Scholar 

  • Steinberg, R. K., Dafforn, K. A., Ainsworth, T. & Johnston, E. L. Know thy anemone. A review of threats to octocorals and anemones and opportunities for their restoration. Front. Mar. Sci. 7, 590 (2020).

    Article 

    Google Scholar 

  • Norström, A. V., Nyström, M., Lokrantz, J. & Folke, C. Alternative states on coral reefs. Beyond coral–macroalgal phase shifts. Mar. Ecol. Prog. Ser. 376, 295–306 (2009).

    ADS 
    Article 

    Google Scholar 

  • van de Water, J. A. J. M., Allemand, D. & Ferrier-Pagès, C. Host-microbe interactions in octocoral holobionts—recent advances and perspectives. Microbiome 6, 64 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Syms, C. & Jones, G. P. Dysturbance, habitat structure, and the dynamics of a coral-reef fish community. Ecology 81, 2714–2729 (2000).

    Article 

    Google Scholar 

  • Syms, C. & Jones, G. P. Soft corals exert no direct effects on coral reef fish assemblages. Oecologia 127, 560–571. https://doi.org/10.1007/s004420000617 (2001).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Epstein, H. E. & Kingsford, M. J. Are soft coral habitats unfavourable? A closer look at the association between reef fishes and their habitat. Environ. Biol. Fishes 102, 479–497 (2019).

    Article 

    Google Scholar 

  • Janes, M. P. Distribution and diversity of the soft coral family Xeniidae (Coelenterata: Octocorallia) in Lembeh Strait, Indonesia. Galaxea, JCRS 15, 195–200 (2013).

    Article 

    Google Scholar 

  • Fox, H. E., Pet, J. S., Dahuri, R. & Caldwell, R. L. Recovery in rubble fields. Long-term impacts of blast fishing. Mar. Pollut. Bull. 46, 1024–1031 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Al-Sofyani, A. A. & Niaz, G. R. A comparative study of the components of the hard coral Seriatopora hystrix and the soft coral Xenia umbellata along the Jeddah coast, Saudi Arabia. Rev. Biol. Mar. Oceanogr. 42, 207–219 (2007).

    Article 

    Google Scholar 

  • Kremien, M., Shavit, U., Mass, T. & Genin, A. Benefit of pulsation in soft corals. PNAS USA 110, 8978–8983 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Swart, P. K., Saied, A. & Lamb, K. Temporal and spatial variation in the δ 15 N and δ 13 C of coral tissue and zooxanthellae in Montastraea faveolata collected from the Florida reef tract. Limnol. Oceanogr. 50, 1049–1058 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Grottoli, A. G., Tchernov, D. & Winters, G. Physiological and biogeochemical responses of super-corals to thermal stress from the northern gulf of Aqaba, Red Sea. Front. Mar. Sci. 4, 215 (2017).

    Article 

    Google Scholar 

  • Tanaka, Y., Miyajima, T., Koike, I., Hayashibara, T. & Ogawa, H. Imbalanced coral growth between organic tissue and carbonate skeleton caused by nutrient enrichment. Limnol. Oceanogr. 52, 1139–1146 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Marubini, F. & Davies, P. S. Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Mar. Biol. 127, 319–328 (1996).

    CAS 
    Article 

    Google Scholar 

  • Dagenais-Bellefeuille, S. & Morse, D. Putting the N in dinoflagellates. Front. Microbiol. https://doi.org/10.3389/fmicb.2013.00369 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wooldridge, S. A. A new conceptual model for the warm-water breakdown of the coral—algae endosymbiosis. Mar. Freshwater Res. 60, 483 (2009).

    CAS 
    Article 

    Google Scholar 

  • Moed, J. R. & Hallegraeff, G. M. Some problems in the estimation of chlorophyll-a and phaeopigments from pre- and post-acidification spectrophotometrie measurements. Int. Revue Ges. Hydrobiol. Hydrogr. 63, 787–800 (1978).

    CAS 
    Article 

    Google Scholar 

  • Redfield, A. C. The biological control of chemical factors in the environment. Am. Sci. 46, A221-230A (1958).

    Google Scholar 

  • Pupier, C. A., Bednarz, V. N. & Ferrier-Pagès, C. Studies with soft corals—recommendations on sample processing and normalization metrics. Front. Mar. Sci. 5, 2620 (2018).

    Article 

    Google Scholar 

  • Pupier, C. A. et al. Dissolved nitrogen acquisition in the symbioses of soft and hard corals with Symbiodiniaceae: A key to understanding their different nutritional strategies?. Front. Microbiol. 12, 657759 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bednarz, V. N., Naumann, M. S., Niggl, W. & Wild, C. Inorganic nutrient availability affects organic matter fluxes and metabolic activity in the soft coral genus Xenia. J. Exp. Biol. 215, 3672–3679 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Béraud, E., Gevaert, F., Rottier, C. & Ferrier-Pagès, C. The response of the scleractinian coral Turbinaria reniformis to thermal stress depends on the nitrogen status of the coral holobiont. J. Exp. Biol. 216, 2665–2674 (2013).

    PubMed 

    Google Scholar 

  • Ezzat, L., Towle, E., Irisson, J.-O., Langdon, C. & Ferrier-Pagès, C. The relationship between heterotrophic feeding and inorganic nutrient availability in the scleractinian coral T. reniformis under a short-term temperature increase. Limnol. Oceanogr. 61, 89–102 (2016).

    ADS 
    Article 

    Google Scholar 

  • Dobson, K. L. et al. Moderate nutrient concentrations are not detrimental to corals under future ocean conditions. Mar. Biol. https://doi.org/10.1007/s00227-021-03901-3 (2021).

    Article 

    Google Scholar 

  • Strychar, K. B., Coates, M., Sammarco, P. W., Piva, T. J. & Scott, P. T. Loss of Symbiodinium from bleached soft corals Sarcophyton ehrenbergi, Sinularia sp. and Xenia sp.. J. Exp. Mar. Biol. Ecol. 320, 159–177. https://doi.org/10.1016/j.jembe.2004.12.039 (2005).

    Article 

    Google Scholar 

  • Sammarco, P. W. & Strychar, K. B. Responses to high seawater temperatures in zooxanthellate octocorals. PloS one 8, e54989 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Osman, E. O. et al. Thermal refugia against coral bleaching throughout the northern Red Sea. Glob. Change Biol. 24, e474–e484. https://doi.org/10.1111/gcb.13895 (2018).

    Article 

    Google Scholar 

  • Fine, M., Gildor, H. & Genin, A. A coral reef refuge in the Red Sea. Glob. Change Biol. 19, 3640–3647 (2013).

    ADS 
    Article 

    Google Scholar 

  • Evensen, N. R., Fine, M., Perna, G., Voolstra, C. R. & Barshis, D. J. Remarkably high and consistent tolerance of a Red Sea coral to acute and chronic thermal stress exposures. Limnol. Oceanogr. 66, 1718–1729 (2021).

    ADS 
    Article 

    Google Scholar 

  • Sawall, Y. et al. Extensive phenotypic plasticity of a Red Sea coral over a strong latitudinal temperature gradient suggests limited acclimatization potential to warming. Sci. Rep. 5, 8940 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Carpenter, E. J., Harvey, H., Fry, B. & Capone, D. G. Biogeochemical tracers of the marine cyanobacterium Trichodesmium. Deep-Sea Res. I: Oceanogr. Res. Pap. 44, 27–38 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kürten, B. et al. Influence of environmental gradients on C and N stable isotope ratios in coral reef biota of the Red Sea, Saudi Arabia. J. Sea Res. 85, 379–394 (2014).

    ADS 
    Article 

    Google Scholar 

  • Karcher, D. B. et al. Nitrogen eutrophication particularly promotes turf algae in coral reefs of the central Red Sea. PeerJ 8, e8737 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sterner, R. W. & Elser, J. J. Ecological Stoichiometry. The Biology of Elements from Molecules to the Biosphere (Princeton University Press, 2002).

  • Tilstra, A. et al. Light induced intraspecific variability in response to thermal stress in the hard coral Stylophora pistillata. PeerJ 5, e3802 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Siebeck, U. E., Marshall, N. J., Klüter, A. & Hoegh-Guldberg, O. Monitoring coral bleaching using a colour reference card. Coral Reefs 25, 453–460 (2006).

    ADS 
    Article 

    Google Scholar 

  • Venn, A. A., Wilson, M. A., Trapido-Rosenthal, H. G., Keely, B. J. & Douglas, A. E. The impact of coral bleaching on the pigment profile of the symbiotic alga, Symbiodinium. Plant Cell Environ. 29, 2133–2142 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dubinsky, Z. V. Y. et al. The effect of external nutrient resources on the optical properties and photosynthetic efficiency of Stylophora pistillata. Proc. R. Soc. B.: Biol. Sci. 239, 231–246 (1990).

    ADS 

    Google Scholar 

  • Fabricius, K. E. Effects of irradiance, flow, and colony pigmentation on the temperature microenvironment around corals: Implications for coral bleaching?. Limnol. Oceanogr. 51, 30–37 (2006).

    ADS 
    Article 

    Google Scholar 

  • Nordemar, I., Nyström, M. & Dizon, R. Effects of elevated seawater temperature and nitrate enrichment on the branching coral Porites cylindrica in the absence of particulate food. Mar. Biol. 142, 669–677 (2003).

    CAS 
    Article 

    Google Scholar 

  • Lewis, J. B. Feeding behaviour and feeding ecology of the Octocorallia (Coelenterata: Anthozoa). J. Zool. 196, 371–384 (1982).

    Article 

    Google Scholar 

  • Studivan, M. S., Hatch, W. I. & Mitchelmore, C. L. Responses of the soft coral Xenia elongata following acute exposure to a chemical dispersant. SpringerPlus 4, 80 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Parrin, A. P. et al. Symbiodinium migration mitigates bleaching in three octocoral species. J. Exp. Mar. Biol. Ecol. 474, 73–80 (2016).

    Article 

    Google Scholar 

  • Parrin, A. P. et al. Within-colony migration of symbionts during bleaching of octocorals. Biol. Bull. 223, 245–256 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome. Underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol. 70, 317–340 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Furnas, M., Mitchell, A., Skuza, M. & Brodie, J. In the other 90%: phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon. Mar. Pollut. Bull. 51, 253–265 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ziegler, M. et al. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2015.12.045 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Gruber, R. et al. Marine monitoring program: Annual report for inshore water quality monitoring 2018–19. Report for the Great Barrier Reef Marine Park Authority. GBRMPA, Townsville (2020).

  • Dinesen, Z. D. Patterns in the distribution of soft corals across the central Great Barrier Reef. Coral Reefs 1, 229–236. https://doi.org/10.1007/BF00304420 (1983).

    ADS 
    Article 

    Google Scholar 

  • Benayahu, Y. et al. Octocorals of the Indo-Pacific. In Mesophotic Coral Ecosystems Vol. 12 (eds Loya, Y. et al.) 709–728 (Springer International Publishing, Cham, 2019).

    Chapter 

    Google Scholar 

  • Tilot, V., Leujak, W., Ormond, R. F. G., Ashworth, J. A. & Mabrouk, A. Monitoring of South Sinai coral reefs: Influence of natural and anthropogenic factors. Aquat. Conserv. 18, 1109–1126 (2008).

    Article 

    Google Scholar 

  • D’Angelo, C. & Wiedenmann, J. Impacts of nutrient enrichment on coral reefs. New perspectives and implications for coastal management and reef survival. Curr. Opin. Environ. Sustain. 7, 82–93 (2014).

    Article 

    Google Scholar 

  • Wooldridge, S. A. & Done, T. J. Improved water quality can ameliorate effects of climate change on corals. Ecol. Appl. 19, 1492–1499 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Nugues, M. M. & Roberts, C. M. Partial mortality in massive reef corals as an indicator of sediment stress on coral reefs. Mar. Pollut. Bull. 46, 314–323 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • LeGresley, M. & McDermott, G. Counting chamber methods for quantitative phytoplankton analysis – haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. In Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis, edited by B. Karlson, C. Cusack & E. Bresnan (IOC UNESCO, Paris, France, 2010), pp. 25–30.

  • Jeffrey, S. W. & Humphrey, G. F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 167, 191–194 (1975).

    CAS 
    Article 

    Google Scholar 

  • D’Angelo, C. et al. Blue light regulation of host pigment in reef-building corals. Mar. Ecol. Prog. Ser. 364, 97–106 (2008).

    ADS 
    Article 

    Google Scholar 

  • Feys, J. Nonparametric tests for the interaction in two-way factorial designs using R. R J. 8, 367 (2016).

    Article 

    Google Scholar 

  • Noguchi, K., Gel, Y. R., Brunner, E. & Konietschke, F. nparLD An R software package for the nonparametric analysis of longitudinal data in factorial experiments. J. Stat. Soft. 50, 1–23 (2012).

    Article 

    Google Scholar 

  • Schlöder, C. & D’Croz, L. Responses of massive and branching coral species to the combined effects of water temperature and nitrate enrichment. J. Exp. Mar. Biol. Ecol. 313, 255–268 (2004).

    Article 

    Google Scholar 

  • Faxneld, S., Jörgensen, T. L. & Tedengren, M. Effects of elevated water temperature, reduced salinity and nutrient enrichment on the metabolism of the coral Turbinaria mesenterina. Estuar. Coast. Shelf Sci. 88, 482–487 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Chumun, P. K. et al. High nitrate levels exacerbate thermal photo-physiological stress of zooxanthellae in the reef-building coral Pocillopora damicornis. Eco-Eng. 25, 1–9 (2013).

    Google Scholar 

  • Higuchi, T., Yuyama, I. & Nakamura, T. The combined effects of nitrate with high temperature and high light intensity on coral bleaching and antioxidant enzyme activities. Reg. Stud. Mar. Sci. 2, 27–31 (2015).

    Google Scholar 


  • Source: Ecology - nature.com

    The evolution of parental care in salamanders

    Simulating neutron behavior in nuclear reactors