in

The role of forest structure and composition in driving the distribution of bats in Mediterranean regions

  • Barnagaud, J. Y., Barbaro, L., Hampe, A., Jiguet, F. & Archaux, F. Species’ thermal preferences affect forest bird communities along landscape and local scale habitat gradients. Ecography (Cop.) 36, 1218–1226 (2013).

    Google Scholar 

  • LeRoy, P. N. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J. North Am. Benthol. Soc. 391–409 (1997).

  • Keddy, P. A. Assembly and response rules: two goals for predictive community ecology. J. Veg. Sci. 3, 157–164 (1992).

    Google Scholar 

  • Whittaker, R. J., Willis, K. J. & Field, R. Scale and species richness: Towards a general, hierarchical theory of species diversity. J. Biogeogr. 28, 453–470 (2001).

    Google Scholar 

  • Willis, K. J. & Whittaker, R. J. Species diversity – scale matters. Science (80-. ). 295, 1245–1247 (2002).

  • Brockerhoff, E. G. et al. Forest biodiversity, ecosystem functioning. Biodivers. Conserv. 26, 3005–3035 (2017).

    Google Scholar 

  • Dolek, M. et al. Ants on oaks: effects of forest structure on species composition. J. Insect Conserv. 13, 367–375 (2009).

    Google Scholar 

  • Díaz, I. A., Armesto, J. J., Reid, S., Sieving, K. E. & Willson, M. F. Linking forest structure and composition: Avian diversity in successional forests of Chiloé Island Chile. Biol. Conserv. 123, 91–101 (2005).

    Google Scholar 

  • Fady-Welterlen, B. Is there really more biodiversity in Mediterranean forest ecosystems?. Taxon 54, 905–910 (2005).

    Google Scholar 

  • Peñuelas, J. et al. Impacts of global change on Mediterranean forests and their services. Forests 8, 1–37 (2017).

    Google Scholar 

  • Resco De Dios, V., Fischer, C. & Colinas, C. Climate change effects on mediterranean forests and preventive measures. New For. 33, 29–40 (2007).

  • Lindner, M. et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manage. 259, 698–709 (2010).

    Google Scholar 

  • Cadieux, P. et al. Projected effects of climate change on boreal bird community accentuated by anthropogenic disturbances in western boreal forest Canada. Divers. Distrib. 26, 668–682 (2020).

    Google Scholar 

  • Simmons, N. B. & Cirranello, A. L. Bat Species of the World: A taxonomic and geographic database. https://batnames.org/home.html (2020).

  • Peixoto, F. P., Braga, P. H. P. & Mendes, P. A synthesis of ecological and evolutionary determinants of bat diversity across spatial scales. BMC Ecol. 18, 1–14 (2018).

    Google Scholar 

  • Bats in forests: conservation and management. (The Johns Hopkins University Press, 2007).

  • Barclay, R. M. R. & Kurta, A. Ecology and behavioyr of bats roosting in tree cavities and under bark. in Bats in forests: Conservation and management (eds. Lacki, M. J., Hayes, J. P. & Kurta, A.) (The Johns Hopkins University Press, 2007).

  • Lacki, M. J., Amelon, S. K. & Baker, M. D. Foraging Ecology of Bats in Forests. in Bats in forests: Conservation and management (eds. Lacki, M. J., Hayes, J. P. & Kurta, A.) 329 (The Johns Hopkins University Press, 2007).

  • Silvis, A., Ford, W. M. & Britzke, E. R. Day-roost tree selection by northern long-eared bats—What do non-roost tree comparisons and one year of data really tell us?. Glob. Ecol. Conserv. 3, 756–763 (2015).

    Google Scholar 

  • Manual de conservación y seguimiento de los quirópteros forestales. in (eds. Guixe, D. & Camprodon, J.) 274 (Ministerio de Agricultura, Pesca y Alimentación y Ministerio para la Transición Ecológica., 2018).

  • Patriquin, K. J. & Barclay, R. M. R. Foraging by bats in cleared, thinned and unharvested boreal forest. J. Appl. Ecol. 40, 646–657 (2003).

    Google Scholar 

  • Carr, A., Weatherall, A. & Jones, G. The effects of thinning management on bats and their insect prey in temperate broadleaved woodland. For. Ecol. Manage. 457, 117682 (2020).

  • Norberg, U. M. & Rayner, J. M. V. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos. Trans. R. Soc. London. B, Biol. Sci. 316, 335–427 (1987).

  • Aldridge, H. D. J. N. & Rautenbach, I. L. Morphology, echolocation and resource partitioning in insectivorous bats. J. Anim. Ecol. 56, 763 (1987).

    Google Scholar 

  • Dodd, L. E. et al. Forest structure affects trophic linkages: How silvicultural disturbance impacts bats and their insect prey. For. Ecol. Manage. 267, 262–270 (2012).

    Google Scholar 

  • Lumsden, L. F. & Bennett, A. F. Scattered trees in rural landscapes: Foraging habitat for insectivorous bats in south-eastern Australia. Biol. Conserv. 122, 205–222 (2005).

    Google Scholar 

  • Fahr, J. & Kalko, E. K. V. Biome transitions as centres of diversity: Habitat heterogeneity and diversity patterns of West African bat assemblages across spatial scales. Ecography (Cop.) 34, 177–195 (2011).

    Google Scholar 

  • Ferreira, D. F. et al. Season-modulated responses of Neotropical bats to forest fragmentation. Ecol. Evol. 7, 4059–4071 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fuentes-Montemayor, E., Goulson, D., Cavin, L., Wallace, J. M. & Park, K. J. Fragmented woodlands in agricultural landscapes: The influence of woodland character and landscape context on bats and their insect prey. Agric. Ecosyst. Environ. 172, 6–15 (2013).

    Google Scholar 

  • Wood, H., Lindborg, R. & Jakobsson, S. European Union tree density limits do not reflect bat diversity in wood-pastures. Biol. Conserv. 210, 60–71 (2017).

    Google Scholar 

  • Sagot, M. & Chaverri, G. Effects of roost specialization on extinction risk in bats. Conserv. Biol. 29, 1666–1673 (2015).

    PubMed 

    Google Scholar 

  • Russo, D., Cistrone, L. & Jones, G. Spatial and temporal patterns of roost use by tree-dwelling barbastelle bats Barbastella barbastellus. Ecography (Cop.) 28, 769–776 (2005).

    Google Scholar 

  • Popa-Lisseanu, A. G., Bontadina, F., Mora, O. & Ibáñez, C. Highly structured fission–fusion societies in an aerial-hawking, carnivorous bat. Anim. Behav. 75, 471–482 (2008).

    Google Scholar 

  • Zambrana Pineda, J. F. & Ríos Jiménez, S. El sector primario andaluz en el siglo XX. Instituto de Estadística de Andalucía (2006).

  • Nogueras, J., Garrido-García, J. A. & Fijo-León, A. Patrones de distribución del complejo “Myotis mystacinus” en la península Ibérica”. Barbastella 6, 24–30 (2013).

    Google Scholar 

  • Boye, P. & Dietz, M. Development of good practice guidelines for woodland management for bats. English Nature Research Reports (2005) ISSN 0967-876X.

  • Dietz, C. & Kiefer, A. Bats of Britain and Europe. (Bloomsbury Publishing, 2016).

  • Estók, P., Gombkötő, P. & Cserkész, T. Roosting behaviour of the greater noctule Nyctalus lasiopterus Schreber, 1780 (Chiroptera, Vespertilionidae) in Hungary as revealed by radio-tracking. Mammalia 71, 1 (2007).

    Google Scholar 

  • Walters, C. L. et al. A continental-scale tool for acoustic identification of European bats. J. Appl. Ecol. 49, 1064–1074 (2012).

    Google Scholar 

  • Smeraldo, S. et al. Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential distribution models: Lessons from bats. Biodivers. Conserv. 27, 2425–2441 (2018).

    Google Scholar 

  • Crome, F. H. J. & Richards, G. C. Bats and gaps : Microchiropteran community structure in a queensland rain forest. Ecology 69, 1960–1969 (1988).

    Google Scholar 

  • R core team. R: A language and environment for statistical computing. (2021).

  • Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.) 36, 27–46 (2013).

    Google Scholar 

  • Franklin, J. F. & Pelt, R. Van. Spatial spects of structural complexity in old-growth forests. J. For. 22–28 (2004).

  • Ishii, H. T., Tanabe, S. & Hiura, T. Canopy structure, stand productivity, and biodiversity of temperate forest ecosystems. For. Sci. 50, (2004).

  • Pebesma, E. & Bivand, R. sp: Classes and methods for spatial data. (2021).

  • Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the Geospatial Data Abstraction Library. (2021).

  • Hijmans, R. J. raster: Geographic Data Analysis and Modeling. (2020).

  • Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 6, 231–252 (2006).

    Google Scholar 

  • Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species Distribution Modeling. (2017).

  • Muscarella, R. et al. ENMeval: Automated runs and evaluations of ecological niche models. (2018).

  • Raes, N. & Ter Steege, H. A null-model for significance testing of presence-only species distribution models. Ecography (Cop.) 30, 727–736 (2007).

    Google Scholar 

  • Wittmann, M. E., Barnes, M. A., Jerde, C. L., Jones, L. A. & Lodge, D. M. Confronting species distribution model predictions with species functional traits. Ecol. Evol. 6, 873–879 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hanspach, J., Kühn, I., Pompe, S. & Klotz, S. Predictive performance of plant species distribution models depends on species traits. Perspect. Plant Ecol. Evol. Syst. 12, 219–225 (2010).

    Google Scholar 

  • Pöyry, J., Luoto, M., Heikkinen, R. K. & Saarinen, K. Species traits are associated with the quality of bioclimatic models. Glob. Ecol. Biogeogr. 17, 403–414 (2008).

    Google Scholar 

  • van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography (Cop.) 39, 542–552 (2016).

    Google Scholar 

  • Froidevaux, J. S. P., Zellweger, F., Bollmann, K., Jones, G. & Obrist, M. K. From field surveys to LiDAR: Shining a light on how bats respond to forest structure. Remote Sens. Environ. 175, 242–250 (2016).

    ADS 

    Google Scholar 

  • Edenius, L. & Elmberg, J. Landscape level effects of modern forestry on bird communities in North Swedish boreal forests. Landsc. Ecol. 11, 325–338 (1996).

    Google Scholar 

  • Drapeau, P. et al. Landscape-scale disturbances and changes in bird communities of boreal mixed-wood forests. Ecol. Monogr. 70, 423–444 (2000).

    Google Scholar 

  • McGarigal, K. & McComb, W. C. Relationships between landscape structure and breeding birds in the Oregon coast range. Ecol. Monogr. 65, 235–260 (1995).

    Google Scholar 

  • Gil-Tena, A., Brotons, L. & Saura, S. Effects of forest landscape change and management on the range expansion of forest bird species in the Mediterranean region. For. Ecol. Manage. 259, 1338–1346 (2010).

    Google Scholar 

  • Gil-tena, A., Brotons, L. & Saura, S. Mediterranean forest dynamics and forest bird distribution changes in the late 20th century. Glob. Chang. Biol. 15, 474–485 (2009).

    ADS 

    Google Scholar 

  • Goiti, U., Garin, I., Almenar, D., Salsamendi, E. & Aihartza, J. Foraging by mediterranean horshoe bats (Rhinolophus euryale) in relation to prey distribution and edge habitat. J. Mammal. 89, 493–502 (2008).

    Google Scholar 

  • Motte, G. & Libois, R. Conservation of the lesser horseshoe bat (Rhinolophus hipposideros Bechstein, 1800) (Mammalia: Chiroptera) in Belgium. A case study of feeding habitat requirements. Belgian J. Zool. 132, 49–54 (2002).

  • Castro, E. B. Los bosques ibéricos: una interpretación geobotánica. (GeoPlaneta, Editorial, SA, 1997).

  • Ozanne, C. M. P. A comparison of the canopy arthropod communities of coniferous and broad-leaved trees in the United Kingdom. Selbyana 20, 290–298 (1999).

  • Vehviläinen, H., Koricheva, J. & Ruohomäki, K. Effects of stand tree species composition and diversity on abundance of predatory arthropods. Oikos 117, 935–943 (2008).

    Google Scholar 

  • Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).

    Google Scholar 

  • Lisón, F. & Sánchez-Fernández, D. Low effectiveness of the Natura 2000 network in preventing land-use change in bat hotspots. Biodivers. Conserv. 26, 1989–2006 (2017).

    Google Scholar 

  • Gillespie, T. W. & Walter, H. Distribution of bird species richness at a regional scale in tropical dry forest of central America. J. Biogeogr. 28, 651–662 (2001).

    Google Scholar 

  • O’Brien, M. J. et al. Tree diversity drives diversity of arthropod herbivores, but successional stage mediates detritivores. Ecol. Evol. 7, 8753–8760 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, J. et al. Tree diversity promotes generalist herbivore community patterns in a young subtropical forest experiment. Oecologia 183, 455–467 (2017).

    ADS 
    PubMed 

    Google Scholar 

  • Naďo, L. et al. Highly selective roosting of the giant noctule bat and its astonishing foraging activity by GPS tracking in a mountain environment. Mammal Res. 64, 587–594 (2019).

    Google Scholar 

  • Begehold, H., Rzanny, M. & Flade, M. Forest development phases as an integrating tool to describe habitat preferences of breeding birds in lowland beech forests. J. Ornithol. 156, 19–29 (2015).

    Google Scholar 

  • Hayes, J. P. Presence, relative abundance, and resource selection of bats in managed forest landscapes in western Oregon. vol. 53 (Oregon State University, 2007).

  • Mortimer, G. Foraging, roosting and survival of natterer’s bats, Myotis nattereri, in a commercial coniferous plantation. (University of St Andrews, 2006).

  • Kirkpatrick, L. et al. Bat use of commercial coniferous plantations at multiple spatial scales: Management and conservation implications. Biol. Conserv. 206, 1–10 (2017).

    Google Scholar 

  • Napal, M. & Ibanez, C. Murcielagos y Bosques. in Manual de conservación y seguimiento de los quirópteros forestales (eds. Guixé, D. & Camprodon, J.) (Organismo Autónomo Parques Nacionales. Ministerio para la Transición Ecológica, 2018).

  • Sleep, D. J. H. & Brigham, R. M. An experimental test of clutter tolerance in bats. J. Mammal. 84, 216–224 (2003).

    Google Scholar 

  • Fukui, D., Murakami, M., Nakano, S. & Aoi, T. Effect of emergent aquatic insects on bat foraging in a riparian forest. J. Anim. Ecol. 75, 1252–1258 (2006).

    PubMed 

    Google Scholar 

  • Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010).

    Google Scholar 

  • Carnicer, J. et al. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc. Natl. Acad. Sci. 108, 1474–1478 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rebelo, H., Tarroso, P. & Jones, G. Predicted impact of climate change on european bats in relation to their biogeographic patterns. Glob. Chang. Biol. 16, 561–576 (2010).

    ADS 

    Google Scholar 

  • Amorim, F., Carvalho, S. B., Honrado, J. & Rebelo, H. Designing optimized multi-species monitoring networks to detect range shifts driven by climate change: A case study with bats in the North of Portugal. PLoS ONE 9, 1 (2014).

    Google Scholar 

  • Mantyka-Pringle, C. S. et al. Climate change modifies risk of global biodiversity loss due to land-cover change. Biol. Conserv. 187, 103–111 (2015).

    Google Scholar 

  • Jandl, R., Spathelf, P., Bolte, A. & Prescott, C. E. Forest adaptation to climate change—is non-management an option?. Ann. For. Sci. 76, 1–13 (2019).

    Google Scholar 

  • Morán-Ordóñez, A. et al. Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios. Ecosyst. Serv. 45, 1 (2020).

    Google Scholar 

  • Wickham, H. et al. ggplot2: Create elegant data visualisations using the grammar of graphics. (2020).


  • Source: Ecology - nature.com

    Tuning in to invisible waves on the JET tokamak

    Using artificial intelligence to find anomalies hiding in massive datasets