Kirilova, E. P., Cremer, H., Heiri, O. & Lotter, A. F. Eutrophication of moderately deep Dutch lakes during the past century: Flaws in the expectations of water management? Hydrobiologia 637, 157–171 (2010).
Google Scholar
Scharf, B. & Viehberg, F. A. Living Ostracoda (Crustacea) from the town moat of Bremen, Germany. Crustaceana 87(8–9), 1124–1135 (2014).
Google Scholar
Rees, S. E. The historical and cultural importance of ponds and small lakes in Wales, UK. Aquat. Conserv. 7(2), 133–139 (1997).
Google Scholar
Brown, A. et al. The ecological impact of conquest and colonisation on a medieval frontier landscape: Combined palynological and geochemical analysis of lake sediments from Radzyń Chełmiński, northern Poland. Geoarchaeology 30, 511–527 (2015).
Google Scholar
Kittel, P. et al. The palaeoecological development of the Late Medieval moat—Multiproxy research at Rozprza Central Poland. Quat. Int. 482, 131–156 (2018).
Google Scholar
Hildebrandt-Radke, I. Geoarchaeological aspects in the studies of prehistoric and early historic settlement complexes. In Studia interdyscyplinarne nad środowiskiem i kulturą w Polsce. Tom 1. Środowisko-Człowiek-Cywilizacja (eds Makohonienko, M. et al.) 57–70 (Bogucki Wyd Naukowe, 2007).
Łyskowski, M. & Wardas-Lasoń, M. Georadar investigations and geochemical analysis in contemporary archaeological studies. Geol. Geophys. Environ. 38(3), 307–315 (2012).
Google Scholar
Korhola, A. & Rautio, M. Cladocera and other branchiopod crustaceans. In Tracking Environmental Change Using Lake Sediments, Vol. 4: Zoological Indicators (eds Smol, J. P. et al.) 5–41 (Kluwer Academic Publishers, 2001).
Google Scholar
Birks, H. H. Plant macrofossils. In Tracking Environmental Change Using Lake Sediments, 3: Terrestrial, Algal, and Siliceous Indicators (eds Smol, J. P. et al.) 49–74 (Kluwer Academic Publishers, 2001).
Battarbee, R. W. Diatom analysis. In Handbook of Holocene Palaeoecology and Palaeohydrology (ed. Berglund, B. E.) 527–570 (Wiley, 1986).
Luoto, T. P., Nevalainen, L., Kultti, S. & Sarmaja-Korjonen, K. An evaluation of the influence of water depth and river inflow on quantitative Cladocera-based temperature and lake level inferences in a shallow boreal lake. Hydrobiologia 676, 143–154 (2011).
Google Scholar
Luoto, T. P. Intra-lake patterns of aquatic insect and mite remains. J. Paleolimnol. 47, 141–157 (2012).
Google Scholar
Hann, B. J. Methods in Quaternary ecology. Cladocera. Geosci. Canada 16, 17–26 (1989).
Dimbleby, G. W. The Palynology of Archaeological Sites (Academic Press. Inc., 1985).
Edwards, K. J. Using space in cultural palynology: The value of the off-site pollen record. In Modelling Ecological Change: Perspectives from Neoecology, Palaeoecology and Environmental Archaeology (eds Harris, D. R. & Thomas, K. D.) 61–74 (Routledge Taylor & Francis Group, 2016).
Kittel, P., Sikora, J. & Wroniecki, P. A Late Medieval motte-and-bailey settlement in a lowland river valley landscape of central Poland. Geoarchaeology 33(5), 558–578 (2018).
Google Scholar
Antczak-Orlewska, O. et al. The environmental history of the oxbow in the Luciąża River valley—Study on the specific microclimate during Allerød and Younger Dryas in central Poland. Quat. Int. https://doi.org/10.1016/j.quaint.2021.08.011 (2021).
Google Scholar
Dearing, J. A. Core correlation and total sediment influx. In Handbook of Holocene Palaeoecology and Palaeohydrology (ed. Berglund, B. E.) 247–270 (Wiley, 1986).
O’Brien, C. et al. A sediment-based multiproxy palaeoecological approach to the environmental archaeology of lake dwellings (crannogs), central Ireland. Holocene 15, 707–719 (2005).
Google Scholar
Ruiz, Z., Brown, A. G. & Langdon, P. G. The potential of chironomid (Insecta: Diptera) larvae in archaeological investigations of floodplain and lake settlements. J. Archaeol. Sci. 33, 14–33 (2006).
Google Scholar
Kittel, P. et al. A multi-proxy reconstruction from Lutomiersk-Koziówki, Central Poland, in the context of early modern hemp and flax processing. J. Archaeol. Sci. 50, 318–337 (2014).
Google Scholar
Kittel, P. et al. On the border between land and water: the environmental conditions of the Neolithic occupation from 4.3 until 1.6 ka BC at Serteya, Western Russia. Geoarchaeology 36, 173–202 (2021).
Google Scholar
Makohonienko, M. et al. Environmental changes during Mesolithic-Neolithic transition in Kuyavia Lakeland, Central Poland. Quat. Int. https://doi.org/10.1016/j.quaint.2021.11.020 (2021).
Google Scholar
Porinchu, D. F. & MacDonald, G. M. The use and application of freshwater midges (Chironomidae: Insecta: Diptera) in geographical research. Prog. Phys. Geogr. 27, 378–422 (2003).
Google Scholar
Brooks, S. J., Langdon, P. G. & Heiri, O. The Identification and Use of Palaearctic Chironomidae Larvae in Palaeoecology. QRA Technical guide no. 10 (Quaternary Research Association, 2007).
Heiri, O., Birks, H. J. B., Brooks, S. J., Velle, G. & Willassen, E. Effects of within-lake variability of fossil assemblages on quantitative chironomid-inferred temperature reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 199, 95–106 (2003).
Google Scholar
Kittel, P., Sikora, J. & Wroniecki, P. The morphology of the Luciąża River valley floor in the vicinity of the Rozprza medieval ring-fort in light of geophysical survey. Bull. Geogr. Phys. Geogr. Ser. 8, 95–106 (2015).
Google Scholar
Hingham, R. & Barker, P. Timber Castles (University of Exeter Press, 2002).
Marciniak-Kajzer, A. Archaeology on Medieval Knights’ Manor Houses in Poland (Wyd. Uniwersytetu Łódzkiego, Wyd. Uniwersytetu Jagiellońskiego, 2016).
Google Scholar
Moller Pillot, H. K. M. Chironomidae Larvae of the Netherlands and Adjacent Lowlands. Biology and Ecology of the Aquatic Orthocladiinae, Prodiamesinae, Diamesinae, Buchonomyiinae, Podonominae, Telmatogetoninae (KNNV Publishing, 2013).
Google Scholar
Luoto, T. P. An assessment of lentic ceratopogonids, ephemeropterans, trichopterans and oribatid mites as indicators of past environmental change in Finland. Ann. Zool. Fenn. 46, 259–270 (2009).
Google Scholar
Cierniewski, J. Spatial complexity of the Cybina river valley organic soils against the background of physiographic conditions. Soil Sci. Annu. 32(4), 3–51 (1981).
Google Scholar
Rydelek, P. Origin and composition of mineral constituents of fen peats from Eastern Poland. J. Plant Nutr. 36(6), 911–928 (2013).
Google Scholar
Wachecka-Kotkowska, L. Rozwój rzeźby obszaru między Piotrkowem Trybunalskim, Radomskiem a Przedborzem w czwartorzędzie (Wyd. Uniwersytetu Łódzkiego, 2015).
Google Scholar
Kittel, P. et al. Lacustrine, fluvial and slope deposits in the wetland shore area in Serteya, Western Russia. Acta Geogr. Lodz 110, 103–124 (2020).
Ciszewski, D. Pollution of Mała Panew River sediments by heavy metals: Part I. Effect of changes in river bed morphology. Pol. J. Environ. Stud. 13(6), 589–595 (2004).
Google Scholar
Borówka, R. Late Vistulian and Holocene denudation magnitude in morainic plateaux: Case studies in the zone of maximum extent of the last ice sheet. Quat. Stud. Pol. 9, 5–31 (1990).
Prusinkiewicz, Z., Bednarek, R., Kośko, A. & Szmyt, M. Palaeopedological studies of the age and properties of illuvial bands at an archaeological site. Quat. Int. 51(52), 195–201 (1998).
Google Scholar
Kühtreiber, T. The medieval castle Lanzenkirchen in Lower Austria: reconstruction of economical and ecological development of an average-sized manor (12th–15th century). Archaeol. Pol. 37, 135–144 (1999).
Kočár, P., Čech, P., Kozáková, R. & Kočárová, R. Environment and economy of the early medieval settlement in Žatec. Interdiscip. Archaeol. 1, 45–60 (2010).
Brown, A. D. & Pluskowski, A. G. Detecting the environmental impact of the Baltic Crusades on a late medieval (13th-15th century) frontier landscape: Palynological analysis from Malbork Castle and hinterland, Northern Poland. J. Archaeol. Sci. 38, 1957–1966 (2011).
Google Scholar
Beneš, J. et al. Archaeobotany of the Old Prague Town defence system, Czech Republic: Archaeology, macro-remains, pollen, and diatoms. Veg. Hist. Archaeobot. 11(1/2), 107–119 (2002).
Google Scholar
Badura, M. & Latałowa, M. Szczątki makroskopowe roślin z obiektów archeologicznych Zespołu Przedbramia w Gdańsku. In Zespół Przedbramia ul. Długiej w Gdańsku. Studium archeologiczne (ed. Pudło, A.) 231–247 (Muzeum Historii Miasta Gdańska, 2016).
Dobrowolski, R. et al. Environmental conditions of settlement in the vicinity of the mediaeval capital of the Cherven Towns (Czermno site, Hrubieszów Basin, Eastern Poland). Quat. Int. 493, 258–273 (2018).
Google Scholar
Makohonienko, M. Środowisko przyrodnicze i gospodarka w otoczeniu średniowiecznego grodu w Łęczycy w świetle analizy palinologicznej. In Początki Łęczycy. Tom I—Archeologia środowiskowa średniowiecznej Łęczycy. Przyroda–Gospodarka–Społeczeństwo (eds Grygiel, R. & Jurek, T.) 95–190 (MAiE w Łodzi, 2014).
Koszałka, J. Źródła archeobotaniczne do rekonstrukcji uwarunkowań przyrodniczych oraz gospodarczych grodu w Łęczycy. In Początki Łęczycy. Tom I – Archeologia środowiskowa średniowiecznej Łęczycy. Przyroda–Gospodarka–Społeczeństwo (eds Grygiel, R. & Jurek, T.) 191–241 (MAiE w Łodzi, 2014).
Digerfeldt, G. Studies on past lake-level fluctuations. In Handbook of Holocene Palaeoecology and Palaeohydrology (ed. Berglund, B. E.) 127–143 (Wiley, 1986).
Magny, M. Palaeoclimatology and archaeology in the wetlands. In The Oxford Handbook of Wetland Archaeology (eds Menotti, F. & O’Sullivan, A.) 585–597 (Oxford University Press, 2013).
Płóciennik, M. et al. Summer temperature drives the lake ecosystem during the Late Weichselian and Holocene in Eastern Europe: A case study from East European Plain. CATENA 214, 106206 (2022).
Google Scholar
Święta-Musznicka, J., Badura, M., Pędziszewska, A. & Latałowa, M. Environmental changes and plant use during the 5th–14th centuries in medieval Gdańsk, northern Poland. Veget. Hist. Archaeobot. 30, 363–381 (2021).
Google Scholar
Rackham, J. & Sidell, J. London’s landscapes: The changing environment. In The Archaeology of Greater London. An Assessment of Archaeological Evidence for Human Presence in the Area Now Covered by Greater London (ed. Kendall, M.) 12–27 (Museum of London, 2000).
Ledger, P., Edwards, K. & Schofield, J. A multiple profile approach to the palynological reconstruction of Norse landscapes in Greenland’s Eastern Settlement. Quat. Res. 82(1), 22–37 (2014).
Google Scholar
Albert, B. & Innes, J. Multi-profile fine-resolution palynological and micro-charcoal analyses at Esklets, North York Moors, UK, with special reference to the Mesolithic-Neolithic transition. Veget. Hist. Archaeobot. 24, 357–375 (2015).
Google Scholar
Sikora, J., Kittel, P. & Wroniecki, P. From a point on the map to a shape in the landscape. Non-invasive verification of medieval ring-forts in Central Poland: Rozprza case study. Archaeol. Pol. 53, 510–514 (2015).
Sikora, J. et al. A palaeoenvironmental reconstruction of the rampart construction of the medieval ring-fort in Rozprza, Central Poland. Archaeol. Anthropol. Sci. 11(8), 4187–4219 (2019).
Google Scholar
Tolksdorf, J. F., Turner, F., Nelle, O., Peters, S. & Bruckner, H. Environmental development and local human impact in the Jeetzel valley (N Germany) since 10 ka BP as detected by geoarchaeological analyses in a coupled aeolian and lacustrine sediment archive at Soven. E&G Quat. Sci. J. 64, 95–110 (2015).
Google Scholar
Oonk S., Slomp C. P. & Huisman D. J. Geochemistry as an aid in archaeological prospection and site interpretation: Current issues and research directions. Archaeol. Prospect. 16, 35–51 (2009).
Google Scholar
Zieliński, T. & Pisarska-Jamroży, M. Which features of deposits should be included in a code and which not? Przegl. Geol. 60, 387–397 (2012).
Clift, P. D. et al. Grain-size variability within a mega-scale point-bar system, False River, Louisiana. Sedimentology 66, 408–434 (2019).
Google Scholar
Blott, S. J. & Pye, K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landf. 26, 1237–1248 (2001).
Google Scholar
Rolland, N. & Larocque, I. The efficiency of kerosene flotation for extraction of chironomid head capsules from lake sediments samples. J. Paleolimnol. 37, 565–572 (2007).
Google Scholar
Schmid, P. E. A Key to the Chironomidae and Their Instars from Austrian Danube Region Streams and Rivers. Part I. Diamesinae Prodiamesinae and Orthocladiinae (Federal Institute for Water Quality of the Ministry of Agriculture and Forestry, 1993).
Andersen, T., Cranston, P. S. & Epler, J. H. Chironomidae of the Holarctic Region: Keys and Diagnoses. Part 1. Larvae. Insect Systematics and Evolution. Supplement 66 (Scandinavian Entomology, 2013).
Walker, I. R. Midges: Chironomidae and related Diptera. In Tracking Environmental Change Using Lake Sediments, Volume 4: Zoological Indicators (eds Smol, J. P. et al.) 43–66 (Kluwer Academic Press, 2001).
Google Scholar
Vallenduuk, H. J. & Moller Pillot, H. K. M. Chironomidae Larvae of the Netherlands and Adjacent Lowlands. General Ecology and Tanypodinae (KNNV Publishing, 2007).
Moller Pillot, H. K. M. Chironomidae Larvae Biology and Ecology of the Chironomini (KNNV Publishing, 2009).
Google Scholar
Juggins, S. C2 Version 1.5 User Guide. Software for Ecological and Palaeoecological Data Analysis and Visualisation (Newcastle University, 2007).
Schweingruber, F. H. Tree Rings. Basics and Applications of Dendrochronology (Kluwer Academic Publishers, 1988).
Skripkin, V. V. & Kovaliukh, N. N. Recent developments in the procedures used at the SSCER Laboratory for the routine preparation of lithium carbide. Radiocarbon 40(1), 211–214 (1998).
Google Scholar
Krąpiec, M., Rakowski, A. Z., Huels, M., Wiktorowski, D. & Hamann, C. A new graphitization system for radiocarbon dating with AMS on the dendrochronological laboratory at AGH-UST Kraków. Radiocarbon 60(4), 1091–1100 (2018).
Google Scholar
Zoppi, U., Crye, J., Song, Q. & Arjomand, A. Performance evaluation of the new AMS system at Accium BioSciences. Radiocarbon 49, 173–182 (2007).
Google Scholar
Reimer, P. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4), 725–757 (2020).
Google Scholar
Bronk Ramsey, C. OxCal Version 4.4.2. Available at: https://c14.arch.ox.ac.uk (2020).
Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1), 337–360 (2009).
Google Scholar
Bronk Ramsey, C. Deposition models for chronological records. Quat. Sci. Rev. 27(1–2), 42–60 (2008).
Google Scholar
Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69 (1982).
Google Scholar
Kohonen, T. Self-Organizing Maps (Springer, 2001).
Google Scholar
Park, Y.-S. et al. Application of a self-organizing map to select representative species in multivariate analysis: A case study determining diatom distribution patterns across France. Ecol. Inform. 1, 247–257 (2006).
Google Scholar
Zhang, Q. et al. Self-organizing feature map classification and ordination of Larix principis-rupprechtii forest in Pangquangou Nature Reserve. Acta Ecol. Sin. 31, 2990–2998 (2011).
Ney, J. J. Practical use of biological statistics. In Inland Fisheries Management in North America (eds Kohler, C. C. et al.) 137–158 (American Fisheries Society, 1993).
Płóciennik, M. et al. Fen ecosystem responses to water-level fluctuations during the early and middle Holocene in central Europe: A case study from Wilczków, Poland. Boreas 44(4), 721–740 (2015).
Google Scholar
Brosse, S., Giraudel, J. L. & Lek, S. Utilisation of non-supervised neural networks and principal component analysis to study fish assemblages. Ecol. Model. 146(1), 159–166 (2001).
Google Scholar
Lek, S., Scardi, M., Verdonschot, P. F. M., Descy, J. P. & Park, Y. S. Modelling Community Structure in Freshwater Ecosystems (Springer, 2005).
Google Scholar
Quinn, G. P. & Keough, M. Experimental Design and Data Analysis for Biologists (University of Cambridge, 2002).
Google Scholar
Płóciennik, M., Kruk, A., Michczyńska, D. J. & Birks, H. J. B. Kohonen artificial neural networks and the IndVal index as supplementary tools for the quantitative analysis of palaeoecological data. Geochronometria 42, 189–201 (2015).
Google Scholar
Vesanto, J. & Alhoniemi, E. Clustering of the self-organizing map. IEEE Trans. Neural Netw. 11, 586–600 (2000).
Google Scholar
Ward, J. H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).
Google Scholar
Alhoniemi, E., Hollmén, J., Simula, O. & Vesanto, J. Process monitoring and modeling using the self-organizing map. Integr. Comput. Aided Eng. 6(1), 3–14 (1999).
Google Scholar
Dufrêne, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
McCune, B. & Mefford, M. S. PcOrd Multivariate Analysis of Ecological Data. Version 6.06 (MjM Software, 2011).
Hadfield, J. D., Krasnov, B. R., Poulin, R. & Nakagawa, S. A tale of two phylogenies: Comparative analyses of ecological interactions. Am. Nat. 183(2), 174–187 (2014).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R Journal 9(2), 378–400 (2017).
Google Scholar
Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-level/Mixed) Regression Models. R Package Version 0.4.5. https://CRAN.R-project.org/package=DHARMa (2022).
Bartoń, K. MuMIn: Multi-model Inference. R Package Version 1.43.17. https://CRAN.R-project.org/package=MuMIn (2020).
de Rosario-Martinez, H. phia: Post-Hoc Interaction Analysis. R Package Version 0.2-1. https://CRAN.R-project.org/package=phia (2015).
Source: Ecology - nature.com