Paini, D. R. et al. Global threat to agriculture from invasive species. PNAS 113, 7575–7579. https://doi.org/10.1073/pnas.1602205113 (2016).
Google Scholar
Molfini, M. et al. A preliminary prioritized list of Italian alien terrestrial invertebrate species. Biol. Invasions 22, 2385–2399. https://doi.org/10.1007/s10530-020-02274-w (2020).
Google Scholar
Sweeney, J. et al. Special issue on invasive pests of forests and urban trees: pathways, early detection, and management. J. Pest Sci. 92, 1–2. https://doi.org/10.1007/s10340-018-01073-6 (2019).
Google Scholar
Pace, R. et al. The bugs in the bags : The risk associated with the introduction of small quantities of fruit and plants by airline passengers. Insects 13, 617. https://doi.org/10.3390/insects13070617 (2022).
Google Scholar
Nugnes, F., Russo, E., Viggiani, G. & Bernardo, U. First record of an invasive fruit fly belonging to Bactrocera dorsalis complex (Diptera: Tephritidae) in Europe. Insects 9, 182. https://doi.org/10.3390/insects9040182 (2018).
Google Scholar
Bernardo, U. et al. Characterization, distribution, biology and impact on Italian walnut orchards of the invasive North-American leafminer Coptodisca lucifluella (Lepidoptera: Heliozelidae). Bull. Entomol. Res. 105, 210–224. https://doi.org/10.1017/S0007485314000947 (2015).
Google Scholar
Saxena, R. C. & Barrion, A. A. Biotypes of insect pests of agricultural crops. Int. J. Trop. Insect Sci. 8, 453–458. https://doi.org/10.1017/s1742758400022475 (1987).
Google Scholar
Bentur, J. S., Cheralu, C. & Rao, P. R. M. Monitoring virulence in Asian rice gall midge populations in India. Entomol. Exp. Appl. 129, 96–106. https://doi.org/10.1111/j.1570-7458.2008.00756.x (2008).
Google Scholar
Lee, C. E. Evolutionary genetics of invasive species. Trends Ecol. Evol. 17, 386–391 (2002).
Google Scholar
Prentis, P. J. et al. Adaptive evolution in invasive species. Trends Plant. Sci. 13, 288–294. https://doi.org/10.1016/j.tplants.2008.03.004 (2008).
Google Scholar
Lack, J. B. et al. Comparative phylogeography of invasive Rattus rattus and Rattus norvegicus in the U.S. reveals distinct colonization histories and dispersal. Biol. Invasions 15, 1067–1087. https://doi.org/10.1007/s10530-012-0351-5 (2013).
Google Scholar
Fišer Pečnikar, Ž. & Buzan EV. 20 years since the introduction of DNA barcoding: From theory to application. J. Appl. Genet. 55, 43–52, https://doi.org/10.1007/s13353-013-0180-y (2014).
Nugnes, F. et al. Genetic diversity of the invasive Gall Wasp Leptocybe invasa (Hymenoptera: Eulophidae) and of its Rickettsia endosymbiont, and associated sex-ratio differences. PLoS ONE 10, e0124660. https://doi.org/10.1371/journal.pone.0124660 (2015).
Google Scholar
Nugnes, F., Bernardo, U. & Viggiani, G. An integrative approach to species discrimination in the Anagrus atomus group sensu stricto (Hymenoptera: Mymaridae), with a description of a new species. Syst. Biodivers. 15, 582–599. https://doi.org/10.1080/14772000.2017.1299811 (2017).
Google Scholar
Packer, L., Gibbs, J., Sheffield, C. & Hanner, R. DNA barcoding and the mediocrity of morphology. Mol. Ecol. Resour. 9, 42–50. https://doi.org/10.1111/j.1755-0998.2009.02631.x (2009).
Google Scholar
Dayrat, B. Towards integrative taxonomy. Biol. J. Linn. Soc. 85, 407–415 (2005).
Google Scholar
Hebert, P. D. N. & Gregory, T. R. The promise of DNA barcoding for taxonomy. Syst. Biol. 54, 852–859. https://doi.org/10.1080/10635150500354886 (2005).
Google Scholar
Faccoli, M., Simonato, M. & Rassati, D. Life history and geographical distribution of the walnut twig beetle, Pityophthorus juglandis (Coleoptera: Scolytinae), in southern Europe. J. Appl. Entomol. 140, 697–705. https://doi.org/10.1111/jen.12299 (2016).
Google Scholar
Verheggen, F. et al. Walnut husk fly, Rhagoletis completa (Diptera: Tephritidae), invades Europe: Invasion potential and control strategies. Appl. Entomol. Zool. 52, 1–7. https://doi.org/10.1007/s13355-016-0459-7 (2017).
Google Scholar
Gargiulo, S. et al. Insetti endemici e nuove invasioni: il complicato quadro dei fitofagi del noce. Entomata. 15, 73–83 (2021).
de Benedetta, F. et al. Carpophilus dimidiatus, nuova minaccia per la nocicoltura. Inf. Agr. 17, 57–59 (2020).
Dobson, R. M. The species of Carpophilus Stephens (Col. Nitidulidae) associated with stored products. Bull. Entomol. Res. 45, 389–402 (1954).
Google Scholar
Audisio, P. Coleoptera: Nitidulidae – Kateretidae. Coleoptera Nitidulidaee Kateretidae Carpophilinae in Fauna d’Italia XXXII 226–269 (Calderini, 1993).
Powell, G. S., Cline, A. R., Duffy, A. G. & Zaspel, J. M. Phylogeny and reclassification of Carpophilinae (Coleoptera: Nitidulidae), with insights into the origins of anthophily. Zool. J. Linn. Soc. 189, 1359–1369. https://doi.org/10.1093/zoolinnean/zlaa001 (2020).
Google Scholar
Bartelt, R. & Hossain, M. Chemical ecology of Carpophilus sap beetles (Coleoptera: Nitidulidae) and development of an environmentally friendly method of crop protection. Terr. Arthropod. Rev. 3, 29–61. https://doi.org/10.1163/187498310×489981 (2010).
Google Scholar
Audisio, P. Fauna Europaea: Coleoptera, Carpophilinae, Carpophilus in Fauna Europaea version 2021.07 https://fauna-eu.org/ (2021).
Tremblay, E., Espinosa, B. & Baldini, C. Dannosità dei Carpofili (Coleoptera: Nitidulidae) alle pesche in Campania. Inf. Fitopatol. 34, 43–45 (1984).
Reales, N. et al. Morphological and molecular identification of Carpophilus dimidiatus (Coleoptera: Nitidulidae) associated with stored walnut in Northwestern Argentina. J. Stored Prod. Res. 76, 37–42. https://doi.org/10.1016/j.jspr.2017.12.002 (2018).
Google Scholar
Hossain, M. Management of Carpophilus Beetle in Almonds. Hort Innovation – Final Report Project #A:1–93 (2018).
Powell, G. S. & Hamilton, M. L. Notes on the Carpophilus Stephens (Coleoptera: Nitidulidae) of Australia, with a new species from Victoria. Zootaxa 4701, 192–196. https://doi.org/10.1017/S0009840X0002730X (2019).
Google Scholar
Boston, W., Leemon, D. & Cunningham, J. P. Virulence screen of Beauveria bassiana isolates for Australian Carpophilus (Coleoptera: Nitidulidae) beetle biocontrol. Agronomy 10, 1207. https://doi.org/10.3390/agronomy10081207 (2020).
Google Scholar
Connell, W.A. A key to Carpophilus sap beetle associated with stored foods in the United States (Coleoptera: Nitidulidae). Department of Agriculture Cooperative Plant Pest Reports 23, 398–404 (1977).
Brown, S. D. J., Armstrong, K. F. & Cruickshank, R. H. Molecular phylogenetics of a South Pacific sap beetle species complex (Carpophilus spp., Coleoptera: Nitidulidae). Mol. Phylogenetics Evol. 64, 428–440. https://doi.org/10.1016/j.ympev.2012.04.018 (2012).
Google Scholar
Leica Application Suite software version 3.8.0; Leica: Switzerland, (2011).
Murray, A. X. I. I. I. Monograph of the family of Nitidulariae. Trans. Linn. Soc. Lond. 24, 211–414. https://doi.org/10.1111/j.1096-3642.1863.tb00163.x (1864).
Google Scholar
Gillogly, L. R. Insects of Micronesia Coleoptera: Nitidulidae*. Insects Micronesia 16, 133–188 (1962).
Connell, W.A. Sap Beetles (Nitidulidae, Coleoptera). in Insect and Mite pests in food, an illustrated key. 151–174 (1991).
DiLorenzo, C.L., Powell, G.S., Cline, A.R. & McHugh, J.V. Carpophiline-ID, a taxonomic web resource for the identification of Carpophilinae (Nitidulidae) of eastern North America. (2021a). https://site.caes.uga.edu/carpophiline-id/
DiLorenzo, C. L., Powell, G. S., Cline, A. R. & McHugh, J. V. Carpophiline-ID: An interactive matrix-based key to the Carpophiline sap beetles (Coleoptera, Nitidulidae) of Eastern North America. ZooKeys 1028, 85–93. https://doi.org/10.3897/zookeys.1024.59467 (2021).
Google Scholar
Motschulsky, V. Insectes des Indes orientales. Etudes entomologiques 7, 20–122 (1858).
Fall, H. C. Miscellaneous notes and descriptions of North American Coleoptera. Am. Entomol. Soc. 36, 89–197 (1910).
Dobson, R. M. A new species of Carpophilus Stephens (Col. Nitidulidae) found on stored produce. Entomol’s Mon. Mag. 90, 299–300 (1954).
Connell, W. A. Carpophilus pilosellus Motschulsky, new synonymy and distribution (Coleoptera: Nitidulidae). Coleopt. Bull. 17, 89–90 (1963).
Kirejtshuk, A.G. Some results of study on the Nitidulidae from Namibia and adjacent territories. Part 1 Coleoptera, Cucujoidea, Nitidulidae. Mitteilungen aus dem Museum für Naturkunde in Berlin Zoologisches Museum und Institut für Spezielle Zoologie (Berlin) 72, 21–52, https://doi.org/10.1002/mmnz.19960720106 (1996).
Wang, D., Bai, X., Zhou, Y., Zhao, Y. Illustrated book of stored grain insects in China. 63–66 (China Press, 2008).
Brown, S.D.J. Molecular systematics and colour variation of Carpophilus species (Coleoptera: Nitidulidae) of the South Pacific. Dissertation, Lincoln University (2009).
Dasgupta, J., Pal, T. K. & Powell, G. S. Taxonomy of Carpophilinae (Coleoptera: Nitidulidae) from Tripura, India with a new species. Annal. Zool. 71, 627–649. https://doi.org/10.3161/00034541ANZ2021.71.3.003 (2021).
Google Scholar
Gebiola, M. et al. Pnigalio agraules (Walker) and Pnigalio mediterraneus Ferrière and Delucchi (Hymenoptera: Eulophidae): Two closely related valid species. J. Nat. Hist. 43, 2465–2480. https://doi.org/10.1080/00222930903105088 (2009).
Google Scholar
Folmer, R. H. A., Nilges, M., Folkers, P. J. M., Konings, R. N. H. & Hilbers, C. W. A model of the complex between single-stranded DNA and the single-stranded DNA binding protein encoded by gene V of filamentous bacteriophage M13. J. Mol. Biol. 240(4), 341–357 (1994).
Google Scholar
Simon, C. et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701. https://doi.org/10.1093/aesa/87.6.651 (1994).
Google Scholar
Schulmeister, S., Wheeler, W. C. & Carpenter, J. M. Simultaneous analysis of the basal lineages of Hymenoptera (Insecta) using sensitivity analysis. Cladistics 18, 455–484. https://doi.org/10.1111/j.1096-0031.2002.tb00287.x (2002).
Google Scholar
Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 1–11. https://doi.org/10.1186/1471-2105-13-134 (2012).
Google Scholar
Campbell, B. C., Steffen-Campbell, J. D. & Werren, J. H. Phylogeny of the Nasonia species complex (Hymenoptera: Pteromalidae) inferred from an internal transcribed spacer (ITS2) and 28S rDNA sequences. Insect. Mol. Biol. 2, 225–237. https://doi.org/10.1111/j.1365-2583.1994.tb00142.x (1994).
Google Scholar
Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).
Google Scholar
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
Google Scholar
Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).
Google Scholar
Edler, D., Klein, J., Antonelli, A. & Silvestro, D. RaxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods Ecol. Evol. 12, 373–377. https://doi.org/10.1111/2041-210X.13512 (2021).
Google Scholar
Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61(3), 539–542 (2012).
Google Scholar
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods. 9, 772. https://doi.org/10.1038/nmeth.2109 (2012).
Google Scholar
Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. Partition Finder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).
Google Scholar
Rambaut, A., FigTree v1.4.2, A Graphical Viewer of Phylogenetic Trees. http://tree.bio.ed.ac.uk/software/figtree/ (2014).
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729. https://doi.org/10.1093/molbev/mst197 (2013).
Google Scholar
Kingman, J. F. C. The coalescent. Stoch. Process. Appl. 13, 235–248. https://doi.org/10.1016/0304-4149(82)90011-4 (1982).
Google Scholar
Austerlitz, F. et al. DNA barcode analysis: A comparison of phylogenetic and statistical classification methods. BMC Bioinform. 10, 1–13. https://doi.org/10.1186/1471-2105-10-S14-S10 (2009).
Google Scholar
Grewe, P. M. et al. Mitochondrial DNA variation among lake trout (Salvelinus namaycush) strains stocked into Lake Ontario. Can. J. Fish. Aquat. Sci. 50, 2397–2403. https://doi.org/10.1139/f93-264 (1993).
Google Scholar
Rossmo, D.K. Geographic profiling. CRC press, 1–378 (1999).
Le Comber, S. C. et al. Geographic profiling as a novel spatial tool for targeting infectious disease control. Int. J. Health Geogr. 10, 1–8. https://doi.org/10.1186/1476-072X-10-35 (2011).
Google Scholar
Stevenson, M. D., Rossmo, D. K., Knell, R. J. & Le Comber, S. C. Geographic profiling as a novel spatial tool for targeting the control of invasive species. Ecography 35, 704–715. https://doi.org/10.1111/j.1600-0587.2011.07292.x (2012).
Google Scholar
Gutiérrez, D. & Menéndez, R. Patterns in the distribution, abundance and body size of carabid beetles (Coleoptera: Caraboidea) in relation to dispersal ability. J. Biogeogr. 24, 903–914. https://doi.org/10.1046/j.1365-2699.1997.00144.x (1997).
Google Scholar
Canter, D., Coffey, T., Huntley, M. & Missen, C. Predicting serial killers’ home base using a decision support system. J. Quant. Criminol. 16, 457–478. https://doi.org/10.1023/A:1007551316253 (2000).
Google Scholar
Muirhead, J. R. et al. Modelling local and long-distance dispersal of invasive emerald ash borer Agrilus planipennis (Coleoptera) in North America. Divers. Distrib. 12, 71–79. https://doi.org/10.1111/j.1366-9516.2006.00218.x (2006).
Google Scholar
Marchioro, M. & Faccoli, M. Dispersal and colonization risk of the walnut twig beetle, Pityophthorus juglandis, in southern Europe. J. Pest Sci. 95, 303–313. https://doi.org/10.1007/s10340-021-01372-5 (2022).
Google Scholar
Meurisse, N. & Pawson, S. Quantifying dispersal of a non-aggressive saprophytic bark beetle. PLoS ONE 12, 1–24. https://doi.org/10.1371/journal.pone.0174111 (2017).
Google Scholar
Papini, A. et al. The use of jackknifing for the evaluation of geographic profiling reliability. Ecol. Inform. 38, 76–81. https://doi.org/10.1016/j.ecoinf.2017.02.001 (2017).
Google Scholar
Statgraphics Plus Version 3.0; Manugistics: Rockville, MD, USA, (1997).
Bagnaia, R. et al. Carta della Natura della Regione Campania: Carta degli habitat alla scala 1:25.000. ISPRA (2017).
Martoni, F., Piper, A. M., Rodoni, B. C. & Blacket, M. J. Disentangling bias for non-destructive insect metabarcoding. PeerJ 10, e12981. https://doi.org/10.7717/peerj.12981 (2022).
Google Scholar
Jelinek, J. & Audisio, P. Elateroidea, Derodontoidea, Bostrichoidea, Lymexyloidea, Cleroidea and Cucujoidea in Catalogue of Palaearctic Coleoptera. 459–490 (Apollo Books, 2007)
Mbenoun, M., Garnas, J. R., Wingfield, M. J., Begoude Boyogueno, A. D. & Roux, J. Metacommunity analyses of Ceratocystidaceae fungi across heterogeneous African savanna landscapes. Fungal Ecol. 28, 76–85. https://doi.org/10.1016/j.funeco.2016.09.007 (2017).
Google Scholar
Norris, L. C. & Norris, D. E. Phylogeny of anopheline (Diptera: Culicidae) species in southern Africa, based on nuclear and mitochondrial genes. J. Vector Ecol. 40, 16–27. https://doi.org/10.1111/jvec.12128 (2015).
Google Scholar
Bernardo, U. et al. A new gall midge species of Asphondylia (Diptera: Cecidomyiidae) inducing flower galls on Clinopodium nepeta (Lamiaceae) from Europe, its phenology, and associated fungi. Environ. Entomol. 47, 609–622. https://doi.org/10.1093/ee/nvy028 (2018).
Google Scholar
Bernardo, U. et al. An integrative study on Asphondylia spp. (Diptera: Cecidomyiidae), causing flower galls on Lamiaceae, with description, phenology, and associated fungi of two new species. Insetcs 12, 958. https://doi.org/10.3390/insects12110958 (2021).
Google Scholar
Wacławik, B. et al. An integrative revision of the subgenus Liophloeodes (Coleoptera: Curculionidae: Entiminae: Polydrusini): taxonomic, systematic, biogeographic and evolutionary insights. Arthropod Syst. Phylogeny. 79, 419–441. https://doi.org/10.3897/asp.79.e64252 (2021).
Google Scholar
Colautti, R. I. & MacIsaac, H. J. A neutral terminology to define ‘invasive’ species. Divers Distrib. 10, 135–141 (2004).
Google Scholar
Crooks, J. A. Lag times and exotic species: The ecology and management of biological invasions in slow-motion. Ecoscience 12, 316–329. https://doi.org/10.2980/i1195-6860-12-3-316.1 (2005).
Google Scholar
Jelínek, J. et al. Epuraea imperialis (Reitter, 1877). New invasive species of Nitidulidae (Coleoptera) in Europe, with a checklist of Sap Beetles introduced to Europe and Mediterranean areas. APP | Physical, Math. Nat. Sci. Accademia Peloritana dei Pericolanti, 94, 1–24, https://doi.org/10.1478/AAPP.942A4 (2016).
Benchi, D., Conelli, L. & Bernardo, U. L. mosca delle noci minaccia le produzioni campane. Inf Agr. 66, 74–76 (2010).
Pollini, A. Entomologia Applicata. (Edagricole, 2013).
Van Steenwyk, R.A. et al. Walnut husk fly control with reduced risk insecticides. Acta Hortic 861, 375–382, https://doi.org/10.17660/ActaHortic.2010.861.5 (2010).
EU (2019). Commission Implementing Regulation (EU) 2019/2072 of 28 November 2019 establishing uniform conditions for the implementation of Regulation (EU) 2016/2031 of the European Parliament and the Council, as regards protective measures against pests of plants, and repealing Commission Regulation (EC) No 690/2008 and amending Commission Implementing Regulation (EU) 2018/2019. Off. j. Eur. Union, Legis., L 319/1, 1–279. Retrieved from https://eur-lex.europa.eu/eli/reg_impl/2019/2072/oj
Russo, E. et al. Biological and molecular characterization of Aromia bungii (Faldermann, 1835) (Coleoptera: Cerambycidae), an emerging pest of stone fruits in Europe. Sci. Rep. 10, 1–10. https://doi.org/10.1038/s41598-020-63959-9 (2020).
Google Scholar
Hsu, F. et al. Introduction of a non-native lineage is linked to the recent black cocoa ant, Dolichoderus thoracicus (Smith, 1860), outbreaks in Taiwan. Taiwania 67, 271–279. https://doi.org/10.6165/tai.2022.67.271 (2022).
Google Scholar
Porter, J. Some studies on the life history and oviposition of Carpophilus dimidiatus (F.) (Coleoptera: Nitidulidae) at various temperatures and humidities. J. Stored Prod. Res. 22, 135–139. https://doi.org/10.1016/0022-474X(86)90006-8 (1986).
Google Scholar
Potter, M. A. et al. A survey of sap beetles (Coleoptera: Nitidulidae) in strawberry fields in West Central Florida. Fla. Entomol. 96, 1188–1189. https://doi.org/10.1653/024.096.0363 (2013).
Google Scholar
Burks, C.S., Yasin, M., El-Shafie, H.A.F. & Wakil, W. Pests of stored dates in Sustainable Pest Management in Date Palm: Current Status and Emerging Challenges (eds Wakil, W., Romeno Faleiro J., Miller, T.A.) 237–286 (Springer, Zürich, Switzerland, 2015). https://doi.org/10.1007/978-3-319-24397-9
Akşit, T., Özsemerci, F. & Çakmak, İ. Studies on determination of harmful fauna in the fig orchards in Aydin province (Turkey). Türkiye Entomoloji Dergisi 27, 181–189 (2003).
Source: Ecology - nature.com