in

The spread of Carpophilus truncatus is on the razor's edge between an outbreak and a pest invasion

  • Paini, D. R. et al. Global threat to agriculture from invasive species. PNAS 113, 7575–7579. https://doi.org/10.1073/pnas.1602205113 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Molfini, M. et al. A preliminary prioritized list of Italian alien terrestrial invertebrate species. Biol. Invasions 22, 2385–2399. https://doi.org/10.1007/s10530-020-02274-w (2020).

    Article 

    Google Scholar 

  • Sweeney, J. et al. Special issue on invasive pests of forests and urban trees: pathways, early detection, and management. J. Pest Sci. 92, 1–2. https://doi.org/10.1007/s10340-018-01073-6 (2019).

    Article 

    Google Scholar 

  • Pace, R. et al. The bugs in the bags : The risk associated with the introduction of small quantities of fruit and plants by airline passengers. Insects 13, 617. https://doi.org/10.3390/insects13070617 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nugnes, F., Russo, E., Viggiani, G. & Bernardo, U. First record of an invasive fruit fly belonging to Bactrocera dorsalis complex (Diptera: Tephritidae) in Europe. Insects 9, 182. https://doi.org/10.3390/insects9040182 (2018).

    Article 
    PubMed Central 

    Google Scholar 

  • Bernardo, U. et al. Characterization, distribution, biology and impact on Italian walnut orchards of the invasive North-American leafminer Coptodisca lucifluella (Lepidoptera: Heliozelidae). Bull. Entomol. Res. 105, 210–224. https://doi.org/10.1017/S0007485314000947 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Saxena, R. C. & Barrion, A. A. Biotypes of insect pests of agricultural crops. Int. J. Trop. Insect Sci. 8, 453–458. https://doi.org/10.1017/s1742758400022475 (1987).

    Article 

    Google Scholar 

  • Bentur, J. S., Cheralu, C. & Rao, P. R. M. Monitoring virulence in Asian rice gall midge populations in India. Entomol. Exp. Appl. 129, 96–106. https://doi.org/10.1111/j.1570-7458.2008.00756.x (2008).

    Article 

    Google Scholar 

  • Lee, C. E. Evolutionary genetics of invasive species. Trends Ecol. Evol. 17, 386–391 (2002).

    Article 

    Google Scholar 

  • Prentis, P. J. et al. Adaptive evolution in invasive species. Trends Plant. Sci. 13, 288–294. https://doi.org/10.1016/j.tplants.2008.03.004 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lack, J. B. et al. Comparative phylogeography of invasive Rattus rattus and Rattus norvegicus in the U.S. reveals distinct colonization histories and dispersal. Biol. Invasions 15, 1067–1087. https://doi.org/10.1007/s10530-012-0351-5 (2013).

    Article 

    Google Scholar 

  • Fišer Pečnikar, Ž. & Buzan EV. 20 years since the introduction of DNA barcoding: From theory to application. J. Appl. Genet. 55, 43–52, https://doi.org/10.1007/s13353-013-0180-y (2014).

  • Nugnes, F. et al. Genetic diversity of the invasive Gall Wasp Leptocybe invasa (Hymenoptera: Eulophidae) and of its Rickettsia endosymbiont, and associated sex-ratio differences. PLoS ONE 10, e0124660. https://doi.org/10.1371/journal.pone.0124660 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Nugnes, F., Bernardo, U. & Viggiani, G. An integrative approach to species discrimination in the Anagrus atomus group sensu stricto (Hymenoptera: Mymaridae), with a description of a new species. Syst. Biodivers. 15, 582–599. https://doi.org/10.1080/14772000.2017.1299811 (2017).

    Article 

    Google Scholar 

  • Packer, L., Gibbs, J., Sheffield, C. & Hanner, R. DNA barcoding and the mediocrity of morphology. Mol. Ecol. Resour. 9, 42–50. https://doi.org/10.1111/j.1755-0998.2009.02631.x (2009).

    Article 
    PubMed 

    Google Scholar 

  • Dayrat, B. Towards integrative taxonomy. Biol. J. Linn. Soc. 85, 407–415 (2005).

    Article 

    Google Scholar 

  • Hebert, P. D. N. & Gregory, T. R. The promise of DNA barcoding for taxonomy. Syst. Biol. 54, 852–859. https://doi.org/10.1080/10635150500354886 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Faccoli, M., Simonato, M. & Rassati, D. Life history and geographical distribution of the walnut twig beetle, Pityophthorus juglandis (Coleoptera: Scolytinae), in southern Europe. J. Appl. Entomol. 140, 697–705. https://doi.org/10.1111/jen.12299 (2016).

    Article 

    Google Scholar 

  • Verheggen, F. et al. Walnut husk fly, Rhagoletis completa (Diptera: Tephritidae), invades Europe: Invasion potential and control strategies. Appl. Entomol. Zool. 52, 1–7. https://doi.org/10.1007/s13355-016-0459-7 (2017).

    Article 

    Google Scholar 

  • Gargiulo, S. et al. Insetti endemici e nuove invasioni: il complicato quadro dei fitofagi del noce. Entomata. 15, 73–83 (2021).

    Google Scholar 

  • de Benedetta, F. et al. Carpophilus dimidiatus, nuova minaccia per la nocicoltura. Inf. Agr. 17, 57–59 (2020).

    Google Scholar 

  • Dobson, R. M. The species of Carpophilus Stephens (Col. Nitidulidae) associated with stored products. Bull. Entomol. Res. 45, 389–402 (1954).

    Article 

    Google Scholar 

  • Audisio, P. Coleoptera: Nitidulidae – Kateretidae. Coleoptera Nitidulidaee Kateretidae Carpophilinae in Fauna d’Italia XXXII 226–269 (Calderini, 1993).

  • Powell, G. S., Cline, A. R., Duffy, A. G. & Zaspel, J. M. Phylogeny and reclassification of Carpophilinae (Coleoptera: Nitidulidae), with insights into the origins of anthophily. Zool. J. Linn. Soc. 189, 1359–1369. https://doi.org/10.1093/zoolinnean/zlaa001 (2020).

    Article 

    Google Scholar 

  • Bartelt, R. & Hossain, M. Chemical ecology of Carpophilus sap beetles (Coleoptera: Nitidulidae) and development of an environmentally friendly method of crop protection. Terr. Arthropod. Rev. 3, 29–61. https://doi.org/10.1163/187498310×489981 (2010).

    Article 

    Google Scholar 

  • Audisio, P. Fauna Europaea: Coleoptera, Carpophilinae, Carpophilus in Fauna Europaea version 2021.07 https://fauna-eu.org/ (2021).

  • Tremblay, E., Espinosa, B. & Baldini, C. Dannosità dei Carpofili (Coleoptera: Nitidulidae) alle pesche in Campania. Inf. Fitopatol. 34, 43–45 (1984).

    Google Scholar 

  • Reales, N. et al. Morphological and molecular identification of Carpophilus dimidiatus (Coleoptera: Nitidulidae) associated with stored walnut in Northwestern Argentina. J. Stored Prod. Res. 76, 37–42. https://doi.org/10.1016/j.jspr.2017.12.002 (2018).

    Article 
    ADS 

    Google Scholar 

  • Hossain, M. Management of Carpophilus Beetle in Almonds. Hort Innovation – Final Report Project #A:1–93 (2018).

  • Powell, G. S. & Hamilton, M. L. Notes on the Carpophilus Stephens (Coleoptera: Nitidulidae) of Australia, with a new species from Victoria. Zootaxa 4701, 192–196. https://doi.org/10.1017/S0009840X0002730X (2019).

    Article 

    Google Scholar 

  • Boston, W., Leemon, D. & Cunningham, J. P. Virulence screen of Beauveria bassiana isolates for Australian Carpophilus (Coleoptera: Nitidulidae) beetle biocontrol. Agronomy 10, 1207. https://doi.org/10.3390/agronomy10081207 (2020).

    Article 

    Google Scholar 

  • Connell, W.A. A key to Carpophilus sap beetle associated with stored foods in the United States (Coleoptera: Nitidulidae). Department of Agriculture Cooperative Plant Pest Reports 23, 398–404 (1977).

  • Brown, S. D. J., Armstrong, K. F. & Cruickshank, R. H. Molecular phylogenetics of a South Pacific sap beetle species complex (Carpophilus spp., Coleoptera: Nitidulidae). Mol. Phylogenetics Evol. 64, 428–440. https://doi.org/10.1016/j.ympev.2012.04.018 (2012).

    Article 

    Google Scholar 

  • Leica Application Suite software version 3.8.0; Leica: Switzerland, (2011).

  • Murray, A. X. I. I. I. Monograph of the family of Nitidulariae. Trans. Linn. Soc. Lond. 24, 211–414. https://doi.org/10.1111/j.1096-3642.1863.tb00163.x (1864).

    Article 

    Google Scholar 

  • Gillogly, L. R. Insects of Micronesia Coleoptera: Nitidulidae*. Insects Micronesia 16, 133–188 (1962).

    Google Scholar 

  • Connell, W.A. Sap Beetles (Nitidulidae, Coleoptera). in Insect and Mite pests in food, an illustrated key. 151–174 (1991).

  • DiLorenzo, C.L., Powell, G.S., Cline, A.R. & McHugh, J.V. Carpophiline-ID, a taxonomic web resource for the identification of Carpophilinae (Nitidulidae) of eastern North America. (2021a). https://site.caes.uga.edu/carpophiline-id/

  • DiLorenzo, C. L., Powell, G. S., Cline, A. R. & McHugh, J. V. Carpophiline-ID: An interactive matrix-based key to the Carpophiline sap beetles (Coleoptera, Nitidulidae) of Eastern North America. ZooKeys 1028, 85–93. https://doi.org/10.3897/zookeys.1024.59467 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Motschulsky, V. Insectes des Indes orientales. Etudes entomologiques 7, 20–122 (1858).

    Google Scholar 

  • Fall, H. C. Miscellaneous notes and descriptions of North American Coleoptera. Am. Entomol. Soc. 36, 89–197 (1910).

    Google Scholar 

  • Dobson, R. M. A new species of Carpophilus Stephens (Col. Nitidulidae) found on stored produce. Entomol’s Mon. Mag. 90, 299–300 (1954).

    Google Scholar 

  • Connell, W. A. Carpophilus pilosellus Motschulsky, new synonymy and distribution (Coleoptera: Nitidulidae). Coleopt. Bull. 17, 89–90 (1963).

    Google Scholar 

  • Kirejtshuk, A.G. Some results of study on the Nitidulidae from Namibia and adjacent territories. Part 1 Coleoptera, Cucujoidea, Nitidulidae. Mitteilungen aus dem Museum für Naturkunde in Berlin Zoologisches Museum und Institut für Spezielle Zoologie (Berlin) 72, 21–52, https://doi.org/10.1002/mmnz.19960720106 (1996).

  • Wang, D., Bai, X., Zhou, Y., Zhao, Y. Illustrated book of stored grain insects in China. 63–66 (China Press, 2008).

  • Brown, S.D.J. Molecular systematics and colour variation of Carpophilus species (Coleoptera: Nitidulidae) of the South Pacific. Dissertation, Lincoln University (2009).

  • Dasgupta, J., Pal, T. K. & Powell, G. S. Taxonomy of Carpophilinae (Coleoptera: Nitidulidae) from Tripura, India with a new species. Annal. Zool. 71, 627–649. https://doi.org/10.3161/00034541ANZ2021.71.3.003 (2021).

    Article 

    Google Scholar 

  • Gebiola, M. et al. Pnigalio agraules (Walker) and Pnigalio mediterraneus Ferrière and Delucchi (Hymenoptera: Eulophidae): Two closely related valid species. J. Nat. Hist. 43, 2465–2480. https://doi.org/10.1080/00222930903105088 (2009).

    Article 

    Google Scholar 

  • Folmer, R. H. A., Nilges, M., Folkers, P. J. M., Konings, R. N. H. & Hilbers, C. W. A model of the complex between single-stranded DNA and the single-stranded DNA binding protein encoded by gene V of filamentous bacteriophage M13. J. Mol. Biol. 240(4), 341–357 (1994).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Simon, C. et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701. https://doi.org/10.1093/aesa/87.6.651 (1994).

    Article 
    CAS 

    Google Scholar 

  • Schulmeister, S., Wheeler, W. C. & Carpenter, J. M. Simultaneous analysis of the basal lineages of Hymenoptera (Insecta) using sensitivity analysis. Cladistics 18, 455–484. https://doi.org/10.1111/j.1096-0031.2002.tb00287.x (2002).

    Article 
    PubMed 

    Google Scholar 

  • Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 1–11. https://doi.org/10.1186/1471-2105-13-134 (2012).

    Article 
    CAS 

    Google Scholar 

  • Campbell, B. C., Steffen-Campbell, J. D. & Werren, J. H. Phylogeny of the Nasonia species complex (Hymenoptera: Pteromalidae) inferred from an internal transcribed spacer (ITS2) and 28S rDNA sequences. Insect. Mol. Biol. 2, 225–237. https://doi.org/10.1111/j.1365-2583.1994.tb00142.x (1994).

    Article 

    Google Scholar 

  • Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).

    CAS 

    Google Scholar 

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Edler, D., Klein, J., Antonelli, A. & Silvestro, D. RaxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods Ecol. Evol. 12, 373–377. https://doi.org/10.1111/2041-210X.13512 (2021).

    Article 

    Google Scholar 

  • Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61(3), 539–542 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods. 9, 772. https://doi.org/10.1038/nmeth.2109 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. Partition Finder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Rambaut, A., FigTree v1.4.2, A Graphical Viewer of Phylogenetic Trees. http://tree.bio.ed.ac.uk/software/figtree/ (2014).

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729. https://doi.org/10.1093/molbev/mst197 (2013).

    Article 
    CAS 

    Google Scholar 

  • Kingman, J. F. C. The coalescent. Stoch. Process. Appl. 13, 235–248. https://doi.org/10.1016/0304-4149(82)90011-4 (1982).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Austerlitz, F. et al. DNA barcode analysis: A comparison of phylogenetic and statistical classification methods. BMC Bioinform. 10, 1–13. https://doi.org/10.1186/1471-2105-10-S14-S10 (2009).

    Article 
    CAS 

    Google Scholar 

  • Grewe, P. M. et al. Mitochondrial DNA variation among lake trout (Salvelinus namaycush) strains stocked into Lake Ontario. Can. J. Fish. Aquat. Sci. 50, 2397–2403. https://doi.org/10.1139/f93-264 (1993).

    Article 

    Google Scholar 

  • Rossmo, D.K. Geographic profiling. CRC press, 1–378 (1999).

  • Le Comber, S. C. et al. Geographic profiling as a novel spatial tool for targeting infectious disease control. Int. J. Health Geogr. 10, 1–8. https://doi.org/10.1186/1476-072X-10-35 (2011).

    Article 

    Google Scholar 

  • Stevenson, M. D., Rossmo, D. K., Knell, R. J. & Le Comber, S. C. Geographic profiling as a novel spatial tool for targeting the control of invasive species. Ecography 35, 704–715. https://doi.org/10.1111/j.1600-0587.2011.07292.x (2012).

    Article 

    Google Scholar 

  • Gutiérrez, D. & Menéndez, R. Patterns in the distribution, abundance and body size of carabid beetles (Coleoptera: Caraboidea) in relation to dispersal ability. J. Biogeogr. 24, 903–914. https://doi.org/10.1046/j.1365-2699.1997.00144.x (1997).

    Article 

    Google Scholar 

  • Canter, D., Coffey, T., Huntley, M. & Missen, C. Predicting serial killers’ home base using a decision support system. J. Quant. Criminol. 16, 457–478. https://doi.org/10.1023/A:1007551316253 (2000).

    Article 

    Google Scholar 

  • Muirhead, J. R. et al. Modelling local and long-distance dispersal of invasive emerald ash borer Agrilus planipennis (Coleoptera) in North America. Divers. Distrib. 12, 71–79. https://doi.org/10.1111/j.1366-9516.2006.00218.x (2006).

    Article 

    Google Scholar 

  • Marchioro, M. & Faccoli, M. Dispersal and colonization risk of the walnut twig beetle, Pityophthorus juglandis, in southern Europe. J. Pest Sci. 95, 303–313. https://doi.org/10.1007/s10340-021-01372-5 (2022).

    Article 

    Google Scholar 

  • Meurisse, N. & Pawson, S. Quantifying dispersal of a non-aggressive saprophytic bark beetle. PLoS ONE 12, 1–24. https://doi.org/10.1371/journal.pone.0174111 (2017).

    Article 
    CAS 

    Google Scholar 

  • Papini, A. et al. The use of jackknifing for the evaluation of geographic profiling reliability. Ecol. Inform. 38, 76–81. https://doi.org/10.1016/j.ecoinf.2017.02.001 (2017).

    Article 

    Google Scholar 

  • Statgraphics Plus Version 3.0; Manugistics: Rockville, MD, USA, (1997).

  • Bagnaia, R. et al. Carta della Natura della Regione Campania: Carta degli habitat alla scala 1:25.000. ISPRA (2017).

  • Martoni, F., Piper, A. M., Rodoni, B. C. & Blacket, M. J. Disentangling bias for non-destructive insect metabarcoding. PeerJ 10, e12981. https://doi.org/10.7717/peerj.12981 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Jelinek, J. & Audisio, P. Elateroidea, Derodontoidea, Bostrichoidea, Lymexyloidea, Cleroidea and Cucujoidea in Catalogue of Palaearctic Coleoptera. 459–490 (Apollo Books, 2007)

  • Mbenoun, M., Garnas, J. R., Wingfield, M. J., Begoude Boyogueno, A. D. & Roux, J. Metacommunity analyses of Ceratocystidaceae fungi across heterogeneous African savanna landscapes. Fungal Ecol. 28, 76–85. https://doi.org/10.1016/j.funeco.2016.09.007 (2017).

    Article 

    Google Scholar 

  • Norris, L. C. & Norris, D. E. Phylogeny of anopheline (Diptera: Culicidae) species in southern Africa, based on nuclear and mitochondrial genes. J. Vector Ecol. 40, 16–27. https://doi.org/10.1111/jvec.12128 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bernardo, U. et al. A new gall midge species of Asphondylia (Diptera: Cecidomyiidae) inducing flower galls on Clinopodium nepeta (Lamiaceae) from Europe, its phenology, and associated fungi. Environ. Entomol. 47, 609–622. https://doi.org/10.1093/ee/nvy028 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Bernardo, U. et al. An integrative study on Asphondylia spp. (Diptera: Cecidomyiidae), causing flower galls on Lamiaceae, with description, phenology, and associated fungi of two new species. Insetcs 12, 958. https://doi.org/10.3390/insects12110958 (2021).

    Article 

    Google Scholar 

  • Wacławik, B. et al. An integrative revision of the subgenus Liophloeodes (Coleoptera: Curculionidae: Entiminae: Polydrusini): taxonomic, systematic, biogeographic and evolutionary insights. Arthropod Syst. Phylogeny. 79, 419–441. https://doi.org/10.3897/asp.79.e64252 (2021).

    Article 

    Google Scholar 

  • Colautti, R. I. & MacIsaac, H. J. A neutral terminology to define ‘invasive’ species. Divers Distrib. 10, 135–141 (2004).

    Article 

    Google Scholar 

  • Crooks, J. A. Lag times and exotic species: The ecology and management of biological invasions in slow-motion. Ecoscience 12, 316–329. https://doi.org/10.2980/i1195-6860-12-3-316.1 (2005).

    Article 

    Google Scholar 

  • Jelínek, J. et al. Epuraea imperialis (Reitter, 1877). New invasive species of Nitidulidae (Coleoptera) in Europe, with a checklist of Sap Beetles introduced to Europe and Mediterranean areas. APP | Physical, Math. Nat. Sci. Accademia Peloritana dei Pericolanti, 94, 1–24, https://doi.org/10.1478/AAPP.942A4 (2016).

  • Benchi, D., Conelli, L. & Bernardo, U. L. mosca delle noci minaccia le produzioni campane. Inf Agr. 66, 74–76 (2010).

    Google Scholar 

  • Pollini, A. Entomologia Applicata. (Edagricole, 2013).

  • Van Steenwyk, R.A. et al. Walnut husk fly control with reduced risk insecticides. Acta Hortic 861, 375–382, https://doi.org/10.17660/ActaHortic.2010.861.5 (2010).

  • EU (2019). Commission Implementing Regulation (EU) 2019/2072 of 28 November 2019 establishing uniform conditions for the implementation of Regulation (EU) 2016/2031 of the European Parliament and the Council, as regards protective measures against pests of plants, and repealing Commission Regulation (EC) No 690/2008 and amending Commission Implementing Regulation (EU) 2018/2019. Off. j. Eur. Union, Legis., L 319/1, 1–279. Retrieved from https://eur-lex.europa.eu/eli/reg_impl/2019/2072/oj

  • Russo, E. et al. Biological and molecular characterization of Aromia bungii (Faldermann, 1835) (Coleoptera: Cerambycidae), an emerging pest of stone fruits in Europe. Sci. Rep. 10, 1–10. https://doi.org/10.1038/s41598-020-63959-9 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hsu, F. et al. Introduction of a non-native lineage is linked to the recent black cocoa ant, Dolichoderus thoracicus (Smith, 1860), outbreaks in Taiwan. Taiwania 67, 271–279. https://doi.org/10.6165/tai.2022.67.271 (2022).

    Article 

    Google Scholar 

  • Porter, J. Some studies on the life history and oviposition of Carpophilus dimidiatus (F.) (Coleoptera: Nitidulidae) at various temperatures and humidities. J. Stored Prod. Res. 22, 135–139. https://doi.org/10.1016/0022-474X(86)90006-8 (1986).

    Article 
    ADS 

    Google Scholar 

  • Potter, M. A. et al. A survey of sap beetles (Coleoptera: Nitidulidae) in strawberry fields in West Central Florida. Fla. Entomol. 96, 1188–1189. https://doi.org/10.1653/024.096.0363 (2013).

    Article 

    Google Scholar 

  • Burks, C.S., Yasin, M., El-Shafie, H.A.F. & Wakil, W. Pests of stored dates in Sustainable Pest Management in Date Palm: Current Status and Emerging Challenges (eds Wakil, W., Romeno Faleiro J., Miller, T.A.) 237–286 (Springer, Zürich, Switzerland, 2015). https://doi.org/10.1007/978-3-319-24397-9

  • Akşit, T., Özsemerci, F. & Çakmak, İ. Studies on determination of harmful fauna in the fig orchards in Aydin province (Turkey). Türkiye Entomoloji Dergisi 27, 181–189 (2003).

    Google Scholar 


  • Source: Ecology - nature.com

    A short exposure to a semi-natural habitat alleviates the honey bee hive microbial imbalance caused by agricultural stress

    Phosphate limitation intensifies negative effects of ocean acidification on globally important nitrogen fixing cyanobacterium