in

The supply of multiple ecosystem services requires biodiversity across spatial scales

  • Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).

    Article 

    Google Scholar 

  • Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).

    Article 

    Google Scholar 

  • Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van der Plas, F. et al. Towards the development of general rules describing landscape heterogeneity–multifunctionality relationships. J. Appl. Ecol. 56, 168–179 (2019).

    Article 

    Google Scholar 

  • Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • van der Plas, F. et al. Biotic homogenization can decrease landscape-scale forest multifunctionality. Proc. Natl Acad. Sci. USA 113, E2549–E2549 (2016).

    Google Scholar 

  • Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hautier, Y. et al. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nat. Ecol. Evol. 2, 50–56 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Srivastava, D. S. & Vellend, M. Biodiversity–ecosystem function research: is it relevant to conservation? Annu. Rev. Ecol. Evol. Syst. 36, 267–294 (2005).

    Article 

    Google Scholar 

  • Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mori, A. S., Isbell, F. & Seidl, R. β-Diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. 33, 549–564 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chase, J. M. & Knight, T. M. Scale-dependent effect sizes of ecological drivers on biodiversity: why standardised sampling is not enough. Ecol. Lett. 16, 17–26 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Chase, J. M. et al. Embracing scale-dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecol. Lett. 21, 1737–1751 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hagan, J. G., Vanschoenwinkel, B. & Gamfeldt, L. We should not necessarily expect positive relationships between biodiversity and ecosystem functioning in observational field data. Ecol. Lett. 24, 2537–2548 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Brose, U. & Hillebrand, H. Biodiversity and ecosystem functioning in dynamic landscapes. Philos. Trans. R. Soc. B 371, 20150267 (2016).

    Article 

    Google Scholar 

  • Isbell, F. et al. Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 105, 871–879 (2017).

    Article 

    Google Scholar 

  • Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes-eight hypotheses. Biol. Rev. 87, 661–685 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Ricotta, C. On beta diversity decomposition: trouble shared is not trouble halved. Ecology 91, 1981–1983 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Kraft, N. J. B. et al. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333, 1755–1758 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gonthier, D. J. et al. Biodiversity conservation in agriculture requires a multi-scale approach. Proc. R. Soc. Lond. B 281, 20141358 (2014).

    Google Scholar 

  • Flynn, D. F. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Le Provost, G. et al. Land-use history impacts functional diversity across multiple trophic groups. Proc. Natl Acad. Sci. USA 117, 1573–1579 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adl, S. M., Coleman, D. C. & Read, F. Slow recovery of soil biodiversity in sandy loam soils of Georgia after 25 years of no-tillage management. Agric. Ecosyst. Environ. 114, 323–334 (2006).

    Article 

    Google Scholar 

  • Le Provost, G. et al. Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nat. Commun. 12, 3918 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • James, L. A. Legacy effects. Oxford Bibliographies in Environmental Science https://doi.org/10.1093/OBO/9780199363445-0019 (2015).

  • Lamy, T., Liss, K. N., Gonzalez, A. & Bennett, E. M. Landscape structure affects the provision of multiple ecosystem services. Environ. Res. Lett. 11, 124017 (2016).

    Article 

    Google Scholar 

  • Alsterberg, C. et al. Habitat diversity and ecosystem multifunctionality—the importance of direct and indirect effects. Sci. Adv. 3, e1601475 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol. Lett. 8, 857–874 (2005).

    Article 

    Google Scholar 

  • Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18, 182–188 (2003).

    Article 

    Google Scholar 

  • Bullock, J. M., Aronson, J., Newton, A. C., Pywell, R. F. & Rey-Benayas, J. M. Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol. Evol. 26, 541–549 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mitchell, M. G. E., Bennett, E. M. & Gonzalez, A. Linking landscape connectivity and ecosystem service provision: current knowledge and research gaps. Ecosystems 16, 894–908 (2013).

    Article 

    Google Scholar 

  • Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories. Basic Appl. Ecol. 11, 473–485 (2010).

    Article 

    Google Scholar 

  • Blüthgen, N. et al. A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization. Basic Appl. Ecol. 13, 207–220 (2012).

    Article 

    Google Scholar 

  • Vogt, J. et al. Eleven years’ data of grassland management in Germany. Biodivers. Data J. 7, e36387 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Linders, T. E. W. et al. Stakeholder priorities determine the impact of an alien tree invasion on ecosystem multifunctionality. People Nat. 3, 658–672 (2021).

    Article 

    Google Scholar 

  • Nathan, R. Long-distance dispersal of plants. Science 313, 786–788 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Manning, P. et al. Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology 96, 1492–1501 (2015).

    Article 

    Google Scholar 

  • Clough, Y. et al. Density of insect-pollinated grassland plants decreases with increasing surrounding land-use intensity. Ecol. Lett. 17, 1168–1177 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Vickery, J. A. et al. The management of lowland neutral grasslands in Britain: effects of agricultural practices on birds and their food resources. J. Appl. Ecol. 38, 647–664 (2001).

    Article 

    Google Scholar 

  • López-Jamar, J., Casas, F., Díaz, M. & Morales, M. B. Local differences in habitat selection by Great Bustards Otis tarda in changing agricultural landscapes: implications for farmland bird conservation. Bird. Conserv. Int. 21, 328–341 (2011).

    Article 

    Google Scholar 

  • Wells, K., Böhm, S. M., Boch, S., Fischer, M. & Kalko, E. K. Local and landscape-scale forest attributes differ in their impact on bird assemblages across years in forest production landscapes. Basic Appl. Ecol. 12, 97–106 (2011).

    Article 

    Google Scholar 

  • Bommarco, R., Lindborg, R., Marini, L. & Öckinger, E. Extinction debt for plants and flower-visiting insects in landscapes with contrasting land use history. Divers. Distrib. 20, 591–599 (2014).

    Article 

    Google Scholar 

  • Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Lee, M., Manning, P., Rist, J., Power, S. A. & Marsh, C. A global comparison of grassland biomass responses to CO2 and nitrogen enrichment. Philos. Trans. R. Soc. B 365, 2047–2056 (2010).

    Article 
    CAS 

    Google Scholar 

  • Smith, P. Do grasslands act as a perpetual sink for carbon? Glob. Change Biol. 20, 2708–2711 (2014).

    Article 

    Google Scholar 

  • Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bradford, M. A. et al. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proc. Natl Acad. Sci. USA 111, 14478–14483 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schaub, S. et al. Plant diversity effects on forage quality, yield and revenues of semi-natural grasslands. Nat. Commun. 11, 768 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Peter, S., Le Provost, G., Mehring, M., Müller, T. & Manning, P. Cultural worldviews consistently explain bundles of ecosystem service prioritisation across rural Germany. People Nat. 4, 218–230 (2022).

    Article 

    Google Scholar 

  • Emmerson, M. et al. How agricultural intensification affects biodiversity and ecosystem services. Adv. Ecol. Res. 55, 43–97 (2016).

    Article 

    Google Scholar 

  • Gonzalez, A. et al. Scaling-up biodiversity–ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl Acad. Sci. USA 100, 12765–12770 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anderson, B. J. et al. Spatial covariance between biodiversity and other ecosystem service priorities. J. Appl. Ecol. 46, 888–896 (2009).

    Article 

    Google Scholar 

  • Maes, J. et al. Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst. Serv. 1, 31–39 (2012).

    Article 

    Google Scholar 

  • Metzger, J. P. et al. Considering landscape-level processes in ecosystem service assessments. Sci. Total Environ. 796, 149028 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Costanza, R. et al. Twenty years of ecosystem services: how far have we come and how far do we still need to go? Ecosyst. Serv. 28, 1–16 (2017).

    Article 

    Google Scholar 

  • DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Schenk, N. et al. Assembled ecosystem measures from grassland EPs (2008–2018) for multifunctionality synthesis—June 2020. Version 40. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27087 (2022).

  • Michael Scherer-Lorenzen, M. & Mueller, S. Acoustic diversity index based on environmental sound recordings on all forest EPs, HAI, 2016. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27568 (2020).

  • Michael Scherer-Lorenzen, M. & Mueller, S. Acoustic diversity index based on environmental sound recordings on all forest EPs, Alb, 2016. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27569 (2020).

  • Michael Scherer-Lorenzen, M. & Mueller, S. Acoustic diversity index based on environmental sound recordings on all forest EPs, SCH, 2016. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27570 (2020).

  • Penone, C. et al. Assembled RAW diversity from grassland EPs (2008–2020) for multidiversity synthesis—November 2020. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27707 (2021).

  • Penone, C. et al. Assembled species information from grassland EPs (2008–2020) for multidiversity synthesis—November 2020. Version 3. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27706 (2021).

  • Junge, X., Schüpbach, B., Walter, T., Schmid, B. & Lindemann-Matthies, P. Aesthetic quality of agricultural landscape elements in different seasonal stages in Switzerland. Landsc. Urban Plan. 133, 67–77 (2015).

    Article 

    Google Scholar 

  • Lindemann-Matthies, P., Junge, X. & Matthies, D. The influence of plant diversity on people’s perception and aesthetic appreciation of grassland vegetation. Biol. Conserv. 143, 195–202 (2010).

    Article 

    Google Scholar 

  • Haines-Young, R. & Potschin, M. B. Common International Classification of Ecosystem Services (CICES) V5.1 and Guidance on the Application of the Revised Structure. https://cices.eu/content/uploads/sites/8/2018/01/Guidance-V51-01012018.pdf (2018)

  • Byrnes, J. E. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).

    Article 

    Google Scholar 

  • Neyret, M. et al. Assessing the impact of grassland management on landscape multifunctionality. Ecosyst. Serv. 52, 101366 (2021).

    Article 

    Google Scholar 

  • Ferraro, D. M. et al. The phantom chorus: birdsong boosts human well-being in protected areas. Proc. R. Soc. B 287, 20201811 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Graves, R. A., Pearson, S. M. & Turner, M. G. Species richness alone does not predict cultural ecosystem service value. Proc. Natl Acad. Sci. USA 114, 3774–3779 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chan, K. M. A., Satterfield, T. & Goldstein, J. Rethinking ecosystem services to better address and navigate cultural values. Ecol. Econ. 74, 8–18 (2012).

    Article 

    Google Scholar 

  • Villamagna, A. M., Angermeier, P. L. & Bennett, E. M. Capacity, pressure, demand, and flow: a conceptual framework for analyzing ecosystem service provision and delivery. Ecol. Complex. 15, 114–121 (2013).

    Article 

    Google Scholar 

  • Bolliger, R., Prati, D., Fischer, M., Hoelzel, N. & Busch, V. Vegetation Records for Grassland EPs, 2008–2018. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/24247 (2020).

  • Le Provost, G. & Manning, P. Cover of all vascular plant species in representative 2×2 quadrats of the major surrounding homogeneous vegetation zones in a 75-m radius of the 150 grassland EPs, 2017–2018. Version 4. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27846 (2021).

  • Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence–absence data. J. Anim. Ecol. 72, 367–382 (2003).

    Article 

    Google Scholar 

  • Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).

    Article 

    Google Scholar 

  • Ostrowski, A., Lorenzen, K., Petzold, E. & Schindler, S. Land use intensity index (LUI) calculation tool of the Biodiversity Exploratories project for grassland survey data from three different regions in Germany since 2006, BEXIS 2 module. Zenodo https://doi.org/10.5281/zenodo.3865579 (2020).

  • Thiele, J., Weisser, W. & Scherreiks, P. Historical land use and landscape metrics of grassland EP. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/25747 (2020).

  • Steckel, J. et al. Landscape composition and configuration differently affect trap-nesting bees, wasps and their antagonists. Biol. Conserv. 172, 56–64 (2014).

    Article 

    Google Scholar 

  • Westphal, C., Steckel, J. & Rothenwöhrer, C. InsectScale / LANDSCAPES – Landscape heterogeneity metrics (grassland EPs, radii 500 m–2000 m, 2009) – shape files. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/24046 (2019).

  • Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442–16447 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gessler, P. E., Moore, I. D., Mckenzie, N. J. & Ryan, P. J. Soil–landscape modelling and spatial prediction of soil attributes. Int. J. Geogr. Inf. Syst. 9, 421–432 (1995).

    Article 

    Google Scholar 

  • Zinko, U., Seibert, J., Dynesius, M. & Nilsson, C. Plant species numbers predicted by a topography-based groundwater flow index. Ecosystems 8, 430–441 (2005).

    Article 
    CAS 

    Google Scholar 

  • Moeslund, J. E. et al. Topographically controlled soil moisture drives plant diversity patterns within grasslands. Biodivers. Conserv. 22, 2151–2166 (2013).

    Article 

    Google Scholar 

  • Keddy, P. A. Assembly and response rules: two goals for predictive community ecology. J. Veg. Sci. 3, 157–164 (1992).

    Article 

    Google Scholar 

  • Myers, M. C., Mason, J. T., Hoksch, B. J., Cambardella, C. A. & Pfrimmer, J. D. Birds and butterflies respond to soil-induced habitat heterogeneity in experimental plantings of tallgrass prairie species managed as agroenergy crops in Iowa, USA. J. Appl. Ecol. 52, 1176–1187 (2015).

    Article 

    Google Scholar 

  • Carvalheiro, L. G. et al. Soil eutrophication shaped the composition of pollinator assemblages during the past century. Ecography 43, 209–221 (2020).

    Article 

    Google Scholar 

  • Schöning, I., Klötzing, T., Schrumpf, M., Solly, E. & Trumbore, S. Mineral soil pH values of all experimental plots (EP) of the Biodiversity Exploratories project from 2011, Soil (core project). Version 8. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/14447 (2021).

  • Sørensen, R., Zinko, U. & Seibert, J. On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrol. Earth Syst. Sci. 10, 101–112 (2006).

    Article 

    Google Scholar 

  • Le Provost, G. et al. Aggregated environmental and land-use covariates of the 150 grassland EPs used in ‘Contrasting responses of above- and belowground diversity to multiple components of land-use intensity’. Version 5. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/31018 (2021).

  • R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2020).

  • Grace, J. B. Structural equation modeling for observational studies. J. Wildl. Manag. 72, 14–22 (2008).

    Article 

    Google Scholar 

  • Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge University Press, 2006).

  • Rosseel, Y. Lavaan: an R package for structural equation modeling and more. Version 0.5–12 (BETA). J. Stat. Softw. 48, 1–36 (2012).

    Article 

    Google Scholar 

  • Le Bagousse-Pinguet, Y. et al. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 116, 8419–8424 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Crop diversification and parasitic weed abundance: a global meta-analysis

    With new heat treatment, 3D-printed metals can withstand extreme conditions