Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).
Google Scholar
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
Google Scholar
Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).
Google Scholar
Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127 (1999).
Google Scholar
Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).
Google Scholar
Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017).
Google Scholar
van der Plas, F. et al. Towards the development of general rules describing landscape heterogeneity–multifunctionality relationships. J. Appl. Ecol. 56, 168–179 (2019).
Google Scholar
Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).
Google Scholar
Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).
Google Scholar
van der Plas, F. et al. Biotic homogenization can decrease landscape-scale forest multifunctionality. Proc. Natl Acad. Sci. USA 113, E2549–E2549 (2016).
Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).
Google Scholar
Hautier, Y. et al. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nat. Ecol. Evol. 2, 50–56 (2018).
Google Scholar
Srivastava, D. S. & Vellend, M. Biodiversity–ecosystem function research: is it relevant to conservation? Annu. Rev. Ecol. Evol. Syst. 36, 267–294 (2005).
Google Scholar
Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).
Google Scholar
Mori, A. S., Isbell, F. & Seidl, R. β-Diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. 33, 549–564 (2018).
Google Scholar
Chase, J. M. & Knight, T. M. Scale-dependent effect sizes of ecological drivers on biodiversity: why standardised sampling is not enough. Ecol. Lett. 16, 17–26 (2013).
Google Scholar
Chase, J. M. et al. Embracing scale-dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecol. Lett. 21, 1737–1751 (2018).
Google Scholar
Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180 (2019).
Google Scholar
Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).
Google Scholar
Hagan, J. G., Vanschoenwinkel, B. & Gamfeldt, L. We should not necessarily expect positive relationships between biodiversity and ecosystem functioning in observational field data. Ecol. Lett. 24, 2537–2548 (2021).
Google Scholar
Brose, U. & Hillebrand, H. Biodiversity and ecosystem functioning in dynamic landscapes. Philos. Trans. R. Soc. B 371, 20150267 (2016).
Google Scholar
Isbell, F. et al. Benefits of increasing plant diversity in sustainable agroecosystems. J. Ecol. 105, 871–879 (2017).
Google Scholar
Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes-eight hypotheses. Biol. Rev. 87, 661–685 (2012).
Google Scholar
Ricotta, C. On beta diversity decomposition: trouble shared is not trouble halved. Ecology 91, 1981–1983 (2010).
Google Scholar
Kraft, N. J. B. et al. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333, 1755–1758 (2011).
Google Scholar
Gonthier, D. J. et al. Biodiversity conservation in agriculture requires a multi-scale approach. Proc. R. Soc. Lond. B 281, 20141358 (2014).
Flynn, D. F. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).
Google Scholar
Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).
Google Scholar
Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).
Google Scholar
Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).
Google Scholar
Le Provost, G. et al. Land-use history impacts functional diversity across multiple trophic groups. Proc. Natl Acad. Sci. USA 117, 1573–1579 (2020).
Google Scholar
Adl, S. M., Coleman, D. C. & Read, F. Slow recovery of soil biodiversity in sandy loam soils of Georgia after 25 years of no-tillage management. Agric. Ecosyst. Environ. 114, 323–334 (2006).
Google Scholar
Le Provost, G. et al. Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nat. Commun. 12, 3918 (2021).
Google Scholar
James, L. A. Legacy effects. Oxford Bibliographies in Environmental Science https://doi.org/10.1093/OBO/9780199363445-0019 (2015).
Lamy, T., Liss, K. N., Gonzalez, A. & Bennett, E. M. Landscape structure affects the provision of multiple ecosystem services. Environ. Res. Lett. 11, 124017 (2016).
Google Scholar
Alsterberg, C. et al. Habitat diversity and ecosystem multifunctionality—the importance of direct and indirect effects. Sci. Adv. 3, e1601475 (2017).
Google Scholar
Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol. Lett. 8, 857–874 (2005).
Google Scholar
Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).
Google Scholar
Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18, 182–188 (2003).
Google Scholar
Bullock, J. M., Aronson, J., Newton, A. C., Pywell, R. F. & Rey-Benayas, J. M. Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol. Evol. 26, 541–549 (2011).
Google Scholar
Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).
Google Scholar
Mitchell, M. G. E., Bennett, E. M. & Gonzalez, A. Linking landscape connectivity and ecosystem service provision: current knowledge and research gaps. Ecosystems 16, 894–908 (2013).
Google Scholar
Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories. Basic Appl. Ecol. 11, 473–485 (2010).
Google Scholar
Blüthgen, N. et al. A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization. Basic Appl. Ecol. 13, 207–220 (2012).
Google Scholar
Vogt, J. et al. Eleven years’ data of grassland management in Germany. Biodivers. Data J. 7, e36387 (2019).
Google Scholar
Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).
Google Scholar
Linders, T. E. W. et al. Stakeholder priorities determine the impact of an alien tree invasion on ecosystem multifunctionality. People Nat. 3, 658–672 (2021).
Google Scholar
Nathan, R. Long-distance dispersal of plants. Science 313, 786–788 (2006).
Google Scholar
Manning, P. et al. Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology 96, 1492–1501 (2015).
Google Scholar
Clough, Y. et al. Density of insect-pollinated grassland plants decreases with increasing surrounding land-use intensity. Ecol. Lett. 17, 1168–1177 (2014).
Google Scholar
Vickery, J. A. et al. The management of lowland neutral grasslands in Britain: effects of agricultural practices on birds and their food resources. J. Appl. Ecol. 38, 647–664 (2001).
Google Scholar
López-Jamar, J., Casas, F., Díaz, M. & Morales, M. B. Local differences in habitat selection by Great Bustards Otis tarda in changing agricultural landscapes: implications for farmland bird conservation. Bird. Conserv. Int. 21, 328–341 (2011).
Google Scholar
Wells, K., Böhm, S. M., Boch, S., Fischer, M. & Kalko, E. K. Local and landscape-scale forest attributes differ in their impact on bird assemblages across years in forest production landscapes. Basic Appl. Ecol. 12, 97–106 (2011).
Google Scholar
Bommarco, R., Lindborg, R., Marini, L. & Öckinger, E. Extinction debt for plants and flower-visiting insects in landscapes with contrasting land use history. Divers. Distrib. 20, 591–599 (2014).
Google Scholar
Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).
Google Scholar
Lee, M., Manning, P., Rist, J., Power, S. A. & Marsh, C. A global comparison of grassland biomass responses to CO2 and nitrogen enrichment. Philos. Trans. R. Soc. B 365, 2047–2056 (2010).
Google Scholar
Smith, P. Do grasslands act as a perpetual sink for carbon? Glob. Change Biol. 20, 2708–2711 (2014).
Google Scholar
Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).
Google Scholar
Bradford, M. A. et al. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proc. Natl Acad. Sci. USA 111, 14478–14483 (2014).
Google Scholar
Schaub, S. et al. Plant diversity effects on forage quality, yield and revenues of semi-natural grasslands. Nat. Commun. 11, 768 (2020).
Google Scholar
Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012).
Google Scholar
Peter, S., Le Provost, G., Mehring, M., Müller, T. & Manning, P. Cultural worldviews consistently explain bundles of ecosystem service prioritisation across rural Germany. People Nat. 4, 218–230 (2022).
Google Scholar
Emmerson, M. et al. How agricultural intensification affects biodiversity and ecosystem services. Adv. Ecol. Res. 55, 43–97 (2016).
Google Scholar
Gonzalez, A. et al. Scaling-up biodiversity–ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).
Google Scholar
Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl Acad. Sci. USA 100, 12765–12770 (2003).
Google Scholar
Anderson, B. J. et al. Spatial covariance between biodiversity and other ecosystem service priorities. J. Appl. Ecol. 46, 888–896 (2009).
Google Scholar
Maes, J. et al. Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst. Serv. 1, 31–39 (2012).
Google Scholar
Metzger, J. P. et al. Considering landscape-level processes in ecosystem service assessments. Sci. Total Environ. 796, 149028 (2021).
Google Scholar
Costanza, R. et al. Twenty years of ecosystem services: how far have we come and how far do we still need to go? Ecosyst. Serv. 28, 1–16 (2017).
Google Scholar
DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).
Google Scholar
Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).
Google Scholar
Schenk, N. et al. Assembled ecosystem measures from grassland EPs (2008–2018) for multifunctionality synthesis—June 2020. Version 40. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27087 (2022).
Michael Scherer-Lorenzen, M. & Mueller, S. Acoustic diversity index based on environmental sound recordings on all forest EPs, HAI, 2016. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27568 (2020).
Michael Scherer-Lorenzen, M. & Mueller, S. Acoustic diversity index based on environmental sound recordings on all forest EPs, Alb, 2016. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27569 (2020).
Michael Scherer-Lorenzen, M. & Mueller, S. Acoustic diversity index based on environmental sound recordings on all forest EPs, SCH, 2016. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27570 (2020).
Penone, C. et al. Assembled RAW diversity from grassland EPs (2008–2020) for multidiversity synthesis—November 2020. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27707 (2021).
Penone, C. et al. Assembled species information from grassland EPs (2008–2020) for multidiversity synthesis—November 2020. Version 3. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27706 (2021).
Junge, X., Schüpbach, B., Walter, T., Schmid, B. & Lindemann-Matthies, P. Aesthetic quality of agricultural landscape elements in different seasonal stages in Switzerland. Landsc. Urban Plan. 133, 67–77 (2015).
Google Scholar
Lindemann-Matthies, P., Junge, X. & Matthies, D. The influence of plant diversity on people’s perception and aesthetic appreciation of grassland vegetation. Biol. Conserv. 143, 195–202 (2010).
Google Scholar
Haines-Young, R. & Potschin, M. B. Common International Classification of Ecosystem Services (CICES) V5.1 and Guidance on the Application of the Revised Structure. https://cices.eu/content/uploads/sites/8/2018/01/Guidance-V51-01012018.pdf (2018)
Byrnes, J. E. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).
Google Scholar
Neyret, M. et al. Assessing the impact of grassland management on landscape multifunctionality. Ecosyst. Serv. 52, 101366 (2021).
Google Scholar
Ferraro, D. M. et al. The phantom chorus: birdsong boosts human well-being in protected areas. Proc. R. Soc. B 287, 20201811 (2020).
Google Scholar
Graves, R. A., Pearson, S. M. & Turner, M. G. Species richness alone does not predict cultural ecosystem service value. Proc. Natl Acad. Sci. USA 114, 3774–3779 (2017).
Google Scholar
Chan, K. M. A., Satterfield, T. & Goldstein, J. Rethinking ecosystem services to better address and navigate cultural values. Ecol. Econ. 74, 8–18 (2012).
Google Scholar
Villamagna, A. M., Angermeier, P. L. & Bennett, E. M. Capacity, pressure, demand, and flow: a conceptual framework for analyzing ecosystem service provision and delivery. Ecol. Complex. 15, 114–121 (2013).
Google Scholar
Bolliger, R., Prati, D., Fischer, M., Hoelzel, N. & Busch, V. Vegetation Records for Grassland EPs, 2008–2018. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/24247 (2020).
Le Provost, G. & Manning, P. Cover of all vascular plant species in representative 2×2 quadrats of the major surrounding homogeneous vegetation zones in a 75-m radius of the 150 grassland EPs, 2017–2018. Version 4. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/27846 (2021).
Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence–absence data. J. Anim. Ecol. 72, 367–382 (2003).
Google Scholar
Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).
Google Scholar
Ostrowski, A., Lorenzen, K., Petzold, E. & Schindler, S. Land use intensity index (LUI) calculation tool of the Biodiversity Exploratories project for grassland survey data from three different regions in Germany since 2006, BEXIS 2 module. Zenodo https://doi.org/10.5281/zenodo.3865579 (2020).
Thiele, J., Weisser, W. & Scherreiks, P. Historical land use and landscape metrics of grassland EP. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/25747 (2020).
Steckel, J. et al. Landscape composition and configuration differently affect trap-nesting bees, wasps and their antagonists. Biol. Conserv. 172, 56–64 (2014).
Google Scholar
Westphal, C., Steckel, J. & Rothenwöhrer, C. InsectScale / LANDSCAPES – Landscape heterogeneity metrics (grassland EPs, radii 500 m–2000 m, 2009) – shape files. Version 2. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/24046 (2019).
Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).
Google Scholar
Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442–16447 (2019).
Google Scholar
Gessler, P. E., Moore, I. D., Mckenzie, N. J. & Ryan, P. J. Soil–landscape modelling and spatial prediction of soil attributes. Int. J. Geogr. Inf. Syst. 9, 421–432 (1995).
Google Scholar
Zinko, U., Seibert, J., Dynesius, M. & Nilsson, C. Plant species numbers predicted by a topography-based groundwater flow index. Ecosystems 8, 430–441 (2005).
Google Scholar
Moeslund, J. E. et al. Topographically controlled soil moisture drives plant diversity patterns within grasslands. Biodivers. Conserv. 22, 2151–2166 (2013).
Google Scholar
Keddy, P. A. Assembly and response rules: two goals for predictive community ecology. J. Veg. Sci. 3, 157–164 (1992).
Google Scholar
Myers, M. C., Mason, J. T., Hoksch, B. J., Cambardella, C. A. & Pfrimmer, J. D. Birds and butterflies respond to soil-induced habitat heterogeneity in experimental plantings of tallgrass prairie species managed as agroenergy crops in Iowa, USA. J. Appl. Ecol. 52, 1176–1187 (2015).
Google Scholar
Carvalheiro, L. G. et al. Soil eutrophication shaped the composition of pollinator assemblages during the past century. Ecography 43, 209–221 (2020).
Google Scholar
Schöning, I., Klötzing, T., Schrumpf, M., Solly, E. & Trumbore, S. Mineral soil pH values of all experimental plots (EP) of the Biodiversity Exploratories project from 2011, Soil (core project). Version 8. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/14447 (2021).
Sørensen, R., Zinko, U. & Seibert, J. On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrol. Earth Syst. Sci. 10, 101–112 (2006).
Google Scholar
Le Provost, G. et al. Aggregated environmental and land-use covariates of the 150 grassland EPs used in ‘Contrasting responses of above- and belowground diversity to multiple components of land-use intensity’. Version 5. Biodiversity Exploratories Information System https://www.bexis.uni-jena.de/ddm/data/Showdata/31018 (2021).
R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2020).
Grace, J. B. Structural equation modeling for observational studies. J. Wildl. Manag. 72, 14–22 (2008).
Google Scholar
Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge University Press, 2006).
Rosseel, Y. Lavaan: an R package for structural equation modeling and more. Version 0.5–12 (BETA). J. Stat. Softw. 48, 1–36 (2012).
Google Scholar
Le Bagousse-Pinguet, Y. et al. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 116, 8419–8424 (2019).
Google Scholar
Source: Ecology - nature.com