in

Thermal adaptation best explains Bergmann’s and Allen’s Rules across ecologically diverse shorebirds

  • Delhey, K. A review of Gloger’s rule, an ecogeographical rule of colour: definitions, interpretations and evidence. Biol. Rev. 94, 1294–1316 (2019).

    PubMed 

    Google Scholar 

  • Tian, L. & Benton, M. J. Predicting biotic responses to future climate warming with classic ecogeographic rules. Curr. Biol. 30, R744–R749 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Ryding, S., Klaassen, M., Tattersall, G. J., Gardner, J. L. & Symonds, M. R. E. Shape-shifting: changing animal morphologies as a response to climatic warming. Trends Ecol. Evol. 36, 1036–1048 (2021).

  • Salewski, V. & Watt, C. Bergmann’s rule: a biophysiological rule examined in birds. Oikos 126, 161–172 (2017).

    Google Scholar 

  • Allen, J. A. The influence of physical conditions in the genesis of species. Radic. Rev. 1, 108–140 (1877).

    Google Scholar 

  • Ashton, K. G., Tracy, M. C. & De Queiroz, A. Is Bergmann’s rule valid for mammals? Am. Nat. 156, 390–415 (2000).

    PubMed 

    Google Scholar 

  • Ashton, K. G. Patterns of within-species body size variation of birds: strong evidence for Bergmann’s rule. Glob. Ecol. Biogeogr. 11, 505–523 (2002).

    Google Scholar 

  • Nudds, R. L. & Oswald, S. A. An interspecific test of Allen’s rule: evolutionary implications for endothermic species. Evolution (N. Y) 61, 2839–2848 (2007).

    CAS 

    Google Scholar 

  • Symonds, M. R. E. & Tattersall, G. J. Geographical variation in bill size across bird species provides evidence for Allen’s rule. Am. Nat. 176, 188–197 (2010).

    PubMed 

    Google Scholar 

  • Cardilini, A. P. A., Buchanan, K. L., Sherman, C. D. H., Cassey, P. & Symonds, M. R. E. Tests of ecogeographical relationships in a non-native species: what rules avian morphology? Oecologia 181, 783–793 (2016).

    ADS 
    PubMed 

    Google Scholar 

  • Alhajeri, B. H., Fourcade, Y., Upham, N. S. & Alhaddad, H. A global test of Allen’s rule in rodents. Glob. Ecol. Biogeogr. 29, 2248–2260 (2020).

    Google Scholar 

  • McNab, B. K. On the ecological significance of Bergmann’s rule. Ecology 52, 845–854 (1971).

    Google Scholar 

  • Meiri, S., Dayan, T. & Simberloff, D. Carnivores, biases and Bergmann’s rule. Biol. J. Linn. Soc. 81, 579–588 (2004).

    Google Scholar 

  • Gohli, J. & Voje, K. L. An interspecific assessment of Bergmann’s rule in 22 mammalian families. BMC Evol. Biol. 16, 1–12 (2016).

    Google Scholar 

  • Freeman, B. G. Little evidence for Bergmann’s rule body size clines in passerines along tropical elevational gradients. J. Biogeogr. 44, 502–510 (2017).

    Google Scholar 

  • Riemer, K., Guralnick, R. P. & White, E. No general relationship between mass and temperature in endothermic species. Elife 7, e27166 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Blackburn, T. M., Gaston, K. J. & Loder, N. Geographic gradients in body size: a clarification of Bergmann’s rule. Divers. Distrib. 5, 165–174 (1999).

    Google Scholar 

  • Watt, C., Mitchell, S. & Salewski, V. Bergmann’s rule; a concept cluster? Oikos 119, 89–100 (2010).

    Google Scholar 

  • James, F. C. Geographic size variation in birds and its relationship to climate. Ecology 51, 365–390 (1970).

    Google Scholar 

  • Cartar, R. V. & Morrison, R. I. G. Metabolic correlates of leg length in breeding arctic shorebirds: the cost of getting high. J. Biogeogr. 32, 377–382 (2005).

    Google Scholar 

  • Friedman, N. R., Harmáčková, L., Economo, E. P. & Remeš, V. Smaller beaks for colder winters: thermoregulation drives beak size evolution in Australasian songbirds. Evolution (N. Y). 71, 2120–2129 (2017).

  • Fan, L., Cai, T., Xiong, Y., Song, G. & Lei, F. Bergmann’s rule and Allen’s rule in two passerine birds in China. Avian. Res. 10, 1–11 (2019).

    Google Scholar 

  • Romano, A., Séchaud, R. & Roulin, A. Geographical variation in bill size provides evidence for Allen’s rule in a cosmopolitan raptor. Glob. Ecol. Biogeogr. 29, 65–75 (2020).

    Google Scholar 

  • Romano, A., Séchaud, R. & Roulin, A. Generalized evidence for Bergmann’s rule: body size variation in a cosmopolitan owl genus. J. Biogeogr. 48, 51–63 (2021).

    Google Scholar 

  • Gardner, J. L. et al. Spatial variation in avian bill size is associated with humidity in summer among Australian passerines. Clim. Chang. Responses 3, 1–11 (2016).

    Google Scholar 

  • Greenberg, R. & Danner, R. M. The influence of the california marine layer on bill size in a generalist songbird. Evolution (N. Y) 66, 3825–3835 (2012).

    Google Scholar 

  • Greenberg, R., Danner, R., Olsen, B. & Luther, D. High summer temperature explains bill size variation in salt marsh sparrows. Ecography (Cop.) 35, 146–152 (2012).

    Google Scholar 

  • Klir, J. J. & Heath, J. E. An infrared thermographic study of surface temperature in relation to external thermal stress in three species of foxes: the red fox (Vulpes vulpes), Arctic fox, and kit fox (Vulpes macrotis). Physiol. Zool. 65, 1011–1021 (1992).

    Google Scholar 

  • Ballentine, B. & Greenberg, R. Common garden experiment reveals genetic control of phenotypic divergence between swamp sparrow subspecies that lack divergence in neutral genotypes. PLoS One 5, 1–6 (2010).

    Google Scholar 

  • Nord, A. & Giroud, S. Lifelong effects of thermal challenges during development in birds and mammals. Front. Physiol. 11, 1–9 (2020).

    Google Scholar 

  • Riek, A. & Geiser, F. Developmental phenotypic plasticity in a marsupial. J. Exp. Biol. 215, 1552–1558 (2012).

    PubMed 

    Google Scholar 

  • Cunningham, S. J., Martin, R. O., Hojem, C. L. & Hockey, P. A. R. Temperatures in excess of critical thresholds threaten nestling growth and survival in a rapidly-warming arid savanna: a study of common fiscals. PLoS One 8, e74613 (2013).

  • Mariette, M. M. & Buchanan, K. L. Prenatal acoustic communication programs offspring for high posthatching temperatures in a songbird. Science 353, 812–814 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nord, A. & Nilsson, J. Å. Incubation temperature affects growth and energy metabolism in blue tit nestlings. Am. Nat. 178, 639–651 (2011).

    PubMed 

    Google Scholar 

  • Serrat, M. A. Allen’s rule revisited: temperature influences bone elongation during a critical period of postnatal development. Anat. Rec. 296, 1534–1545 (2013).

    Google Scholar 

  • Larson, E. R. et al. Nest microclimate predicts bill growth in the Adelaide rosella (Aves: Psittaculidae). Biol. J. Linn. Soc. 124, 339–349 (2018).

    Google Scholar 

  • Burness, G., Huard, J. R., Malcolm, E. & Tattersall, G. J. Post-hatch heat warms adult beaks: irreversible physiological plasticity in Japanese quail. Proc. R. Soc. B Biol. Sci. 280, 20131436 (2013).

  • Husby, A., Hille, S. M. & Visser, M. E. Testing mechanisms of bergmann’s rule: phenotypic decline but no genetic change in body size in three passerine bird populations. Am. Nat. 178, 202–213 (2011).

    PubMed 

    Google Scholar 

  • Cresswell, W., Clark, J. A. & Macleod, R. How climate change might influence the starvation-predation risk trade-off response. Proc. R. Soc. B Biol. Sci. 276, 3553–3560 (2009).

    CAS 

    Google Scholar 

  • McNamara, J. M., Higginson, A. D. & Verhulst, S. The influence of the starvation-predation trade-off on the relationship between ambient temperature and body size among endotherms. J. Biogeogr. 43, 809–819 (2016).

    PubMed 

    Google Scholar 

  • Dickman, C. R. Body size, prey size, and community structure in insectivorous mammals. Ecology 69, 569–580 (1988).

    Google Scholar 

  • Carbone, C., Mace, G. M., Roberts, S. C. & Macdonald, D. W. Energetic constraints on the diet of terrestrial carnivores. Nature 402, 286–288 (1999).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cohen, J. E., Pimm, S. L., Yodzis, P., & Saldaña, J. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 62, 67–78 (1993).

    Google Scholar 

  • McKinnon, L. et al. Lower predation risk for migratory birds at high latitudes. Science 327, 326–327 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Díaz, M. et al. The geography of fear: a latitudinal gradient in anti-predator escape distances of birds across Europe. PLoS One 8, e64634 (2013).

  • Gosler, A. G., Greenwood, J. J. D. & Perrins, C. Predation risk and the cost of being fat. Nature 377, 621–623 (1995).

    ADS 
    CAS 

    Google Scholar 

  • Anderson, A. M. et al. Consistent declines in wing lengths of Calidridine sandpipers suggest a rapid morphometric response to environmental change. PLoS One 14, 1–21 (2019).

    CAS 

    Google Scholar 

  • Milá, B., Wayne, R. K. & Smith, T. B. Ecomorphology of migratory and sedentary populations of the yellow-rumped warbler (Dendroica Coronata). Condor 110, 335–344 (2008).

    Google Scholar 

  • O’Hara, P. D., Fernández, G., Haase, B., de la Cueva, H. & Lank, D. B. Differential migration in western sandpipers with respect to body size and wing length. Condor 108, 225–232 (2006).

    Google Scholar 

  • Ketterson, E. D. & Nolan, V. Geographic variation and its climatic correlates in the sex ratio of eastern-wintering dark-eyed juncos (Junco hyemalis hyemalis). Ecology 57, 679–693 (1976).

    Google Scholar 

  • Nebel, S. Differential migration of shorebirds in the East Asian-Australasian Flyway. Emu 107, 14–18 (2007).

    Google Scholar 

  • Elner, R. W. & Seaman, D. A. Calidrid conservation: unrequited needs. Wader Study Gr. Bull. 100, 30–34 (2003).

    Google Scholar 

  • Greenberg, R. Dissimilar bill shapes in new world tropical versus temperate forest foliage-gleaning birds. Oecologia 49, 143–147 (1981).

    ADS 
    PubMed 

    Google Scholar 

  • Nebel, S. Latitudinal clines in bill length and sex ratio in a migratory shorebird: a case of resource partitioning? Acta Oecologica 28, 33–38 (2005).

    ADS 

    Google Scholar 

  • Mathot, K. J., Smith, B. D. & Elner, R. W. Latitudinal clines in food distribution correlate with differential migration in the Western Sandpiper. Ecology 88, 781–791 (2007).

    PubMed 

    Google Scholar 

  • Duijns, S. et al. Sex-specific winter distribution in a sexually dimorphic shorebird is explained by resource partitioning. Ecol. Evol. 4, 4009–4018 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilson, J. R., Nebel, S. & Minton, C. D. T. Migration ecology and morphometrics of two Bar-tailed Godwit populations in Australia. Emu 107, 262–274 (2007).

    Google Scholar 

  • Nebel, S., Rogers, K. G., Minton, C. D. T. & Rogers, D. I. Is geographical variation in the size of Australian shorebirds consistent with hypotheses on differential migration? Emu 113, 99–111 (2013).

    Google Scholar 

  • Beltran, R. S., Burns, J. M. & Breed, G. A. Convergence of biannual moulting strategies across birds and mammals. Proc. R. Soc. B Biol. Sci. 285, 20180318 (2018).

  • Tattersall, G. J., Arnaout, B. & Symonds, M. R. E. The evolution of the avian bill as a thermoregulatory organ. Biol. Rev. 92, 1630–1656 (2017).

    PubMed 

    Google Scholar 

  • Battley, P. F., Rogers, D. I., Piersma, T. & Koolhaas, A. Behavioural evidence for heat-load problems in Great Knots in tropical Australia fuelling for long-distance flight. Emu 103, 97–103 (2003).

    Google Scholar 

  • Rogers, D. I., Piersma, T. & Hassell, C. J. Roost availability may constrain shorebird distribution: Exploring the energetic costs of roosting and disturbance around a tropical bay. Biol. Conserv. 133, 225–235 (2006).

    Google Scholar 

  • Danner, R. M. & Greenberg, R. A critical season approach to Allen’s rule: Bill size declines with winter temperature in a cold temperate environment. J. Biogeogr. 42, 114–120 (2015).

    Google Scholar 

  • Buchholz, R. Thermoregulatory role of the unfeathered head and neck in male wild turkeys. Auk 113, 310–318 (1996).

    Google Scholar 

  • Marchant, S. & Higgins, P. J. (eds.) Handbook of Australian, New Zealand and Antarctic Birds. Volume 2: Raptors to Lapwings (Oxford University Press, 1993).

  • Higgins, P. J. & Davies, S. J. J. F. (eds.) Handbook of Australian, New Zealand and Antarctic Birds. Volume 3: Snipe to Pigeons (Oxford University Press, 1996).

  • Andrew, S. C., Hurley, L. L., Mariette, M. M. & Griffith, S. C. Higher temperatures during development reduce body size in the zebra finch in the laboratory and in the wild. J. Evol. Biol. 30, 2156–2164 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Morrick, Z. N. et al. Differential population trends align with migratory connectivity in an endangered shorebird. Conserv. Sci. Pract. 4, 1–13 (2022).

    Google Scholar 

  • Hassell, C., Southey, I., Boyle, A. & Yang, H.-Y. Red knot Calidris canutus: subspecies and migration in the East Asian-Australasian flyway – where do all the red knot go? BirdingASIA 16, 89–93 (2011).

    Google Scholar 

  • Battley, P. F. et al. Contrasting extreme long-distance migration patterns in bar-tailed godwits Limosa lapponica. J. Avian Biol. 43, 21–32 (2012).

    Google Scholar 

  • Aharon-Rotman, Y., Buchanan, K. L., Clark, N. J., Klaassen, M. & Buttemer, W. A. Why fly the extra mile? Using stress biomarkers to assess wintering habitat quality in migratory shorebirds. Oecologia 182, 385–395 (2016).

    ADS 
    PubMed 

    Google Scholar 

  • Aharon-Rotman, Y., Gosbell, K., Minton, C. & Klaassen, M. Why fly the extra mile? Latitudinal trend in migratory fuel deposition rate as driver of trans-equatorial long-distance migration. Ecol. Evol. 6, 6616–6624 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hollands, D. & Minton, C. Waders: The Shorebirds of Australia (Bloomings Books, 2012).

  • Siepielski, A. M. et al. No evidence that warmer temperatures are associated with selection for smaller body sizes. Proc. R. Soc. B Biol. Sci. 286, 20191332 (2019).

  • Ho, C. K., Pennings, S. C. & Carefoot, T. H. Is diet quality an overlooked mechanism for Bergmann’s rule? Am. Nat. 175, 269–276 (2010).

    PubMed 

    Google Scholar 

  • Piersma, T. et al. Fuel storage rates in Red Knots worldwide: facing the severest ecological constraint in tropical intertidal environments? In Birds of Two Worlds: Ecology and Evolution of Migration (eds Greenburg, R. & Marra, P. P.) (Smithsonian Institution Press, 2005).

  • Hedenström, A. & Rosén, M. Predator versus prey: on aerial hunting and escape strategies in birds. Behav. Ecol. 12, 150–156 (2001).

    Google Scholar 

  • Van Den Hout, P. J., Mathot, K. J., Maas, L. R. M. & Piersma, T. Predator escape tactics in birds: linking ecology and aerodynamics. Behav. Ecol. 21, 16–25 (2010).

    Google Scholar 

  • Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).

    Google Scholar 

  • Cain, K. E. et al. Conspicuous plumage does not increase predation risk: a continent-wide test using model songbirds. Am. Nat. 193, 359–372 (2019).

    PubMed 

    Google Scholar 

  • Cohen, J. E., Pimm, S. L., Yodzis, P. & Saldana, J. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 62, 67–78 (1993).

    Google Scholar 

  • Gotmark, F. & Post, P. Prey selection by sparrowhawks, Accipiter nisus: relative predation risk for breeding passerine birds in relation to their size, ecology and behaviour. Philos. Trans. R. Soc. B Biol. Sci. 351, 1559–1577 (1996).

    ADS 

    Google Scholar 

  • McQueen, A. et al. Evolutionary drivers of seasonal plumage colours: colour change by moult correlates with sexual selection, predation risk and seasonality across passerines. Ecol. Lett. 22, 1838–1849 (2019).

    PubMed 

    Google Scholar 

  • Martínez, A. E. & Zenil, R. T. Foraging guild influences dependence on heterospecific alarm calls in Amazonian bird flocks. Behav. Ecol. 23, 544–550 (2012).

    Google Scholar 

  • Gauthreaux, S. A. The ecological significance of behavioral dominance. In Social Behavior. Perspectives in Ethology, vol 3 (eds Bateson, P. P. G. & Klopfer, P. H.) (Springer, 1978).

  • Friedman, N. R. et al. Evolution of a multifunctional trait: Shared effects of foraging ecology and thermoregulation on beak morphology, with consequences for song evolution. Proc. R. Soc. B Biol. Sci. 286, 20192474 (2019).

  • Campbell-Tennant, D. J. E., Gardner, J. L., Kearney, M. R. & Symonds, M. R. E. Climate-related spatial and temporal variation in bill morphology over the past century in Australian parrots. J. Biogeogr. 42, 1163–1175 (2015).

    Google Scholar 

  • Sullivan, T. N., Meyers, M. A. & Arzt, E. Scaling of bird wings and feathers for efficient flight. Sci. Adv. 5, 1–9 (2019).

    Google Scholar 

  • Gosler, A. G., Greenwood, J. J. D., Baker, J. K. & Davidson, N. C. The field determination of body size and condition in passerines: a report to the British Ringing Committee. Bird. Study 45, 92–103 (1998).

    Google Scholar 

  • Tattersall, G. J., Chaves, J. A. & Danner, R. M. Thermoregulatory windows in Darwin’s finches. Funct. Ecol. 32, 358–368 (2018).

    Google Scholar 

  • Weeks, B. C. et al. Shared morphological consequences of global warming in North American migratory birds. Ecol. Lett. 23, 316–325 (2020).

    PubMed 

    Google Scholar 

  • Minton, C. The history and achievements of the Victorian Wader Study Group. Stilt 50, 285–294 (2006).

    Google Scholar 

  • Minton, C. The history of wader studies in north-west Australia. Stilt 50, 224–234 (2006).

    Google Scholar 

  • Lowe, K. W. The Australian Bird Bander’s Manual (Australian Bird and Bat Banding Scemes, Australian National Parks and Wildlife Services, 1989).

  • Aarif, K. M. Some aspects of feeding ecology of the lesser sand plover Charadrius mongolus in three different zones in the Kadalundy Estuary, Kerala, South India. Podoces 4, 100–1007 (2009).

    Google Scholar 

  • Bates, D., Maechler, M. & Bolker, B. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  • Rue, H. et al. Bayesian computing with INLA: a review. Annu. Rev. Stat. Its Appl. 4, 395–421 (2017).

    ADS 

    Google Scholar 

  • Li, D., Dinnage, R., Nell, L. A., Helmus, M. R. & Ives, A. R. phyr: an r package for phylogenetic species-distribution modelling in ecological communities. Methods Ecol. Evol. 11, 1455–1463 (2020).

    Google Scholar 

  • Simpson, D., Rue, H., Riebler, A., Martins, T. G. & Sørbye, S. H. Penalising model component complexity: a principled, practical approach to constructing priors. Stat. Sci. 32, 1–28 (2017).

    MathSciNet 
    MATH 

    Google Scholar 

  • Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Schliep, K. Phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • McQueen, A et al. Data from: thermal adaptation best explains Bergmann’s and Allen’s rule across ecologically diverse shorebirds. Dryad Dataset. https://doi.org/10.5061/dryad.xsj3tx9j5.

  • Tattersall, G. J., Andrade, D. V. & Abe, A. S. Heat exchange from the toucan bill reveals a controllable vascular thermal radiator. Science 325, 468–470 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Greenberg, R., Cadena, V., Danner, R. M. & Tattersall, G. Heat loss may explain bill size differences between birds occupying different habitats. PLoS One 7, 1–9 (2012).

    Google Scholar 

  • Ryeland, J., Weston, M. A. & Symonds, M. R. E. Bill size mediates behavioural thermoregulation in birds. Funct. Ecol. 31, 885–893 (2017).

    Google Scholar 

  • Pavlovic, G., Weston, M. A. & Symonds, M. R. E. Morphology and geography predict the use of heat conservation behaviours across birds. Funct. Ecol. 33, 286–296 (2019).

    Google Scholar 


  • Source: Ecology - nature.com

    Long-term study on survival and development of successive generations of Mytilus galloprovincialis cryopreserved larvae

    Passion projects prepare to launch