Sherr, E. B. & Sherr, B. F. Role of microbes in pelagic food webs: A revised concept. Limnol. Oceanogr. 33, 1225–1227 (1988).
Google Scholar
Weisse, T. Pelagic microbes—Protozoa and the microbial food web. In The Lakes Handbook, Vol. 1—Limnology and Limnetic Ecology (eds O’Sullivan, P. & Reynolds, C. S.) 417–460 (Blackwell Science Ltd, 2004).
Foissner, W. Protist diversity: Estimates of the near-imponderable. Protist 150, 363–368 (1999).
Google Scholar
Sommer, U. & Sommer, F. Cladocerans versus copepods: The cause of contrasting top–down controls on freshwater and marine phytoplankton. Oecologia 147, 183–194 (2006).
Google Scholar
Wiackowski, K., Brett, M. T. & Goldman, C. R. Differential effects of zooplankton species on ciliate community structure. Limnol. Oceanogr. 39, 486–492 (1994).
Google Scholar
Armengol, L., Calbet, A., Franchy, G., Rodríguez-Santos, A. & Hernández-León, S. Planktonic food web structure and trophic transfer efficiency along a productivity gradient in the tropical and subtropical Atlantic Ocean. Sci. Rep. 9, 2044. https://doi.org/10.1038/s41598-019-38507-9 (2019).
Google Scholar
Carrick, H. J., Fahnenstiel, G. L., Stoermer, E. F. & Wetzel, R. G. The importance of zooplankton-protozoan trophic couplings in Lake Michigan. Limnol. Oceanogr. 36, 1335–1345. https://doi.org/10.4319/lo.1991.36.7.1335 (1991).
Google Scholar
Jack, J. D. & Gilbert, J. J. Effects of metazoan predators on ciliates in freshwater plankton communities. J. Eukaryot. Microbiol. 44, 194–199. https://doi.org/10.1111/j.1550-7408.1997.tb05699.x (1997).
Google Scholar
Sanders, R. W. & Wickham, S. A. Planktonic protozoa and metazoa: Predation, food quality and population control. Mar. Microb. Food Webs 7, 197–223 (1993).
Kiørboe, T. How zooplankton feed: Mechanisms, traits and trade-offs. Biol. Rev. 86, 311–339. https://doi.org/10.1111/j.1469-185X.2010.00148.x (2011).
Google Scholar
Gliwicz, Z. M. Zooplankton. The Lakes Handbook: Limnology and Limnetic Ecology Vol. 1 (eds P. O’Sullivan & C. S. Reynolds) 461–516 (Blackwell Science Ltd, 2004).
Wickham, S. A. The direct and indirect impact of Daphnia and cyclops on a freshwater microbial food web. J. Plankton Res. 20, 739–755 (1998).
Google Scholar
Gilbert, J. J. Suppression of rotifer populations by Daphnia: A review of the evidence, the mechanisms, and the effects on zooplankton community structure. Limnol. Oceanogr. 33, 1286–1303 (1988).
Google Scholar
Lampert, W. & Muck, P. Multiple aspects of food limitation in zooplankton communities: The Daphnia-Eudiaptomus example. Ergebnisse der Limnologie/Adv. Limnol. 21, 311–322 (1985).
Kiørboe, T. What makes pelagic copepods so successful?. J. Plankton Res. 33, 677–685. https://doi.org/10.1093/plankt/fbq159 (2011).
Google Scholar
Paffenhöfer, G.-A. Heterotrophic protozoa and small metazoa: Feeding rates and prey-consumer interactions. J. Plankton Res. 20, 121–133 (1998).
Google Scholar
Forró, L., Korovchinsky, N. M., Kotov, A. A. & Petrusek, A. Global diversity of cladocerans (Cladocera; Crustacea) in freshwater. In Freshwater Animal Diversity Assessment 177–184 (Springer, 2007).
Jack, J. D. & Gilbert, J. J. Susceptibilities of different-sized ciliates to direct suppression by small and large cladocerans. Freshw. Biol. 29, 19–29 (1993).
Google Scholar
Jürgens, K. Impact of Daphnia on planktonic microbial food webs—A review. Mar. Microb. Food Webs 8, 295–324 (1994).
Calbet, A. & Saiz, E. The ciliate-copepod link in marine ecosystems. Aquat. Microb. Ecol. 38, 157–167. https://doi.org/10.3354/ame038157 (2005).
Google Scholar
Saiz, E. & Calbet, A. Scaling of feeding in marine calanoid copepods. Limnol. Oceanogr. 52, 668–675 (2007).
Google Scholar
Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Ann. Rev. Mar. Sci. 9, 413–444 (2017).
Google Scholar
Pierce, R. W. & Turner, J. T. Ecology of planktonic ciliates in marine food webs. Rev. Aquat. Sci. 6, 139–181 (1992).
Oghenekaro, E. U. & Chigbu, P. Population dynamics and life history of marine cladocera in the maryland coastal bays, USA. J. Coast. Res. 35, 1225–1236 (2019).
Google Scholar
Pestorić, B., Lučić, D & Joksimović, D. Cladocerans spatial and temporal distribution in the coastal south Adriatic waters (Montenegro). Stud. Mar. 25, 101–120 (2011).
Adrian, R. & Schneider-Olt, B. Top-down effects of crustacean zooplankton on pelagic microorganisms in a mesotrophic lake. J. Plankton Res. 21, 2175–2190. https://doi.org/10.1093/plankt/21.11.2175 (1999).
Google Scholar
Burns, C. W. & Schallenberg, M. Relative impacts of copepods, cladocerans and nutrients on the microbial food web of a mesotrophic lake. J. Plankton Res. 18, 683–714. https://doi.org/10.1093/plankt/18.5.683 (1996).
Google Scholar
Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281, 237–240 (1998).
Google Scholar
Lewis, W. M. Jr. Global primary production of lakes: 19th Baldi Memorial Lecture. Inland Waters 1, 1–28 (2011).
Google Scholar
Moore, C. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710. https://doi.org/10.1038/NGEO1765 (2013).
Google Scholar
Gilbert, J. J. Jumping behavior in the oligotrich ciliates Strobilidium velox and Halteria grandinella and its significance as a defense against rotifers. Microb. Ecol. 27, 189–200 (1994).
Google Scholar
Weisse, T. & Sonntag, B. Ciliates in planktonic food webs: communication and adaptive response. In Biocommunication of Ciliates (eds Witzany, G. & Nowacki, M.) 351–372 (Springer International Publishing, 2016).
Burns, C. W. & Gilbert, J. J. Predation on ciliates by freshwater calanoid copepods: Rates of predation and relative vulnerabilities of prey. Freshw. Biol. 30, 377–393. https://doi.org/10.1111/j.1365-2427.1993.tb00822.x (1993).
Google Scholar
Lampert, W. & Sommer, U. Limnoecolgy 2nd edn. (Oxford University Press, 2007).
Almeda, R., Someren Gréve, H. & Kiørboe, T. Prey perception mechanism determines maximum clearance rates of planktonic copepods. Limnol. Oceanogr. 63, 2695–2707. https://doi.org/10.1002/lno.10969 (2018).
Google Scholar
Holling, C. S. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can. Entomol. 91, 293–320 (1959).
Google Scholar
Fenchel, T. Ecology of protozoa. The Biology of Free-living Phagotrophic Protists (Science Tech./Springer, 1987).
Weisse, T. et al. Functional ecology of aquatic phagotrophic protists—Concepts, limitations, and perspectives. Eur. J. Protistol. 55, 50–74. https://doi.org/10.1016/j.ejop.2016.03.003 (2016).
Google Scholar
Wickham, S. A. Cyclops predation on ciliates: Species-specific differences and functional responses. J. Plankton Res. 17, 1633–1646 (1995).
Google Scholar
Coats, D. W. & Bachvaroff, T. R. Parasites of tintinnids. In The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton (eds Dolan, R. et al.) 145–170 (Wiley, 2012).
Google Scholar
Guillou, L. et al. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ. Microbiol. 10, 3349–3365. https://doi.org/10.1111/j.1462-2920.2008.01731.x (2008).
Google Scholar
Brun, P. G., Payne, M. R. & Kiørboe, T. A trait database for marine copepods. Earth Syst. Sci. Data 9, 99–113. https://doi.org/10.5194/essd-9-99-2017 (2017).
Google Scholar
Armengol, L., Franchy, G., Ojeda, A., Santana-del Pino, Á. & Hernández-León, S. Effects of copepods on natural microplankton communities: Do they exert top-down control?. Mar. Biol. 164, 136. https://doi.org/10.1007/s00227-017-3165-2 (2017).
Google Scholar
Moriarty, R. & O’Brien, T. Distribution of mesozooplankton biomass in the global ocean. Earth Syst. Sci. Data 5, 45–55 (2013).
Google Scholar
Landry, M. R., Al-Mutairi, H., Selph, K. E., Christensen, S. & Nunnery, S. Seasonal patterns of mesozooplankton abundance and biomass at Station ALOHA. Deep Sea Res. Part II Top. Stud. Oceanogr. 48, 2037–2061 (2001).
Google Scholar
Turner, J. T. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud. 43, 255–266 (2004).
Heneghan, R. F. et al. A functional size-spectrum model of the global marine ecosystem that resolves zooplankton composition. Ecol. Model. 435, 109265. https://doi.org/10.1016/j.ecolmodel.2020.109265 (2020).
Google Scholar
Wang, Q. et al. Predicting temperature impacts on aquatic productivity: Questioning the metabolic theory of ecology’s “canonical” activation energies. Limnol. Oceanogr. 64, 1172–1185. https://doi.org/10.1002/lno.11105 (2019).
Google Scholar
Montagnes, D. J. Ecophysiology and behavior of tintinnids. In The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton (eds Dolan, R. et al.) 85–121 (Wiley, 2012).
Google Scholar
McManus, G. B. & Santoferrara, L. F. Tintinnids in microzooplankton communities. In The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton (eds Dolan, R. et al.) 198–213 (Wiley, 2012).
Google Scholar
Fileman, E., Petropavlovsky, A. & Harris, R. Grazing by the copepods Calanus helgolandicus and Acartia clausi on the protozooplankton community at station L4 in the Western English Channel. J. Plankton Res. 32, 709–724. https://doi.org/10.1093/plankt/fbp142 (2010).
Google Scholar
Zeldis, J. R. & Décima, M. Mesozooplankton connect the microbial food web to higher trophic levels and vertical export in the New Zealand Subtropical Convergence Zone. Deep Sea Res. Part I Oceanogr. Res. Pap. 155, 103146. https://doi.org/10.1016/j.dsr.2019.103146 (2020).
Google Scholar
Stoecker, D. K. Predators of tintinnids. In The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton (eds Dolan, J. R. et al.) 122–144 (Wiley, 2012).
Google Scholar
Levinsen, H. & Nielsen, T. G. The trophic role of marine pelagic ciliates and heterotrophic dinoflagellates in arctic and temperate coastal ecosystems: A cross-latitude comparison. Limnol. Oceanogr. 47, 427–439. https://doi.org/10.4319/lo.2002.47.2.0427 (2002).
Google Scholar
Gallienne, C. & Robins, D. Is Oithona the most important copepod in the world’s oceans?. J. Plankton Res. 23, 1421–1432. https://doi.org/10.1093/plankt/23.12.1421 (2001).
Google Scholar
Stoecker, D. K. & Egloff, D. A. Predation by Acartia tonsa Dana on planktonic ciliates and rotifers. J. Exp. Mar. Biol. Ecol. 110, 53–68 (1987).
Google Scholar
Stoecker, D. & Pierson, J. Predation on protozoa: Its importance to zooplankton revisited. J. Plankton Res. 41, 367–373. https://doi.org/10.1093/plankt/fbz027 (2019).
Google Scholar
Diehl, S. & Feissel, M. Intraguild prey suffer from enrichment of their resources: A microcosm experiment with ciliates. Ecology 82, 2977–2983 (2001).
Google Scholar
Broglio, E., Saiz, E., Calbet, A., Trepat, I. & Alcaraz, M. Trophic impact and prey selection by crustacean zooplankton on the microbial communities of an oligotrophic coastal area (NW Mediterranean Sea). Aquat. Microb. Ecol. 35, 65–78 (2004).
Google Scholar
Sommer, U. et al. Beyond the Plankton Ecology Group (PEG) Model: Mechanisms driving plankton succession. Annu. Rev. Ecol. Evol. Syst. 43, 429–448. https://doi.org/10.1146/annurev-ecolsys-110411-160251 (2012).
Google Scholar
IGKB. Jahresbericht der Internationalen Gewässerschutzkommission für den Bodensee: Limnologischer Zustand des Bodensees Nr. 43 (2018–2019), 128 https://www.igkb.org/oeffentlichkeitsarbeit/limnologischer-zustand-des-sees-gruene-berichte/. (2020).
Wetzel, R. G. Limnology—Lake and River Ecosystems 3rd edn. (Academic Press, 2001).
Kumar, R. Effects of Mesocyclops thermocyclopoides (Copepoda: Cyclopoida) predation on the population growth patterns of different prey species. J. Freshw. Ecol. 18, 383–393. https://doi.org/10.1080/02705060.2003.9663974 (2003).
Google Scholar
Porter, K. G., Pace, M. L. & Battey, F. J. Ciliate protozoans as links in freshwater planktonic food chains. Nature 277, 563–565 (1979).
Google Scholar
Landry, M. & Fagerness, V. Behavioral and morphological influences on predatory interactions among marine copepods. Bull. Mar. Sci. 43, 509–529 (1988).
Krainer, K.-H. & Müller, H. Morphology, infraciliature and ecology of a nerw planktonic ciliate, Histiobalantium bodamicum n. sp. (Scuticociliatida: Histiobalantiidae). Eur. J. Protistol. 31, 389–395 (1995).
Google Scholar
Lu, X., Gao, Y. & Weisse, T. Functional ecology of two contrasting freshwater ciliated protists in relation to temperature. J. Eukaryot. Microb. 68, e12823. https://doi.org/10.1111/jeu.12823 (2021).
Google Scholar
Menden-Deuer, S. & Lessard, E. J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45, 569–579. https://doi.org/10.4319/lo.2000.45.3.0569 (2000).
Google Scholar
Bergkemper, V. & Weisse, T. Phytoplankton response to the summer heat wave 2015—A case study from Lake Mondsee, Austria. Inland Waters 7, 88–99. https://doi.org/10.1080/20442041.2017.1294352 (2017).
Google Scholar
Crosbie, N. D., Teubner, K. & Weisse, T. Flow-cytometric mapping provides novel insights into the seasonal and vertical distributions of freshwater autotrophic picoplankton. Aquat. Microb. Ecol. 33, 53–66. https://doi.org/10.3354/ame033053 (2003).
Google Scholar
Dokulil, M. T. & Teubner, K. Deep living Planktothrix rubescens modulated by environmental constraints and climate forcing. Hydrobiologia 698, 29–46 (2012).
Google Scholar
Weisse, T., Lukić, D. & Lu, X. Container volume may affect growth rates of ciliates and clearance rates of their microcrustacean predators in microcosm experiments. J. Plankton Res. 43, 288–299. https://doi.org/10.1093/plankt/fbab017 (2021).
Google Scholar
Bergkemper, V. & Weisse, T. Do current European lake monitoring programmes reliably estimate phytoplankton community changes? Hydrobiologia 824, 143–162. https://doi.org/10.1007/s10750-017-3426-6 (2018).
Google Scholar
Rosen, R. A. Length-dry weight relationships of some freshwater zooplanktona. J. Freshw. Ecol. 1, 225–229 (1981).
Google Scholar
Frost, B. W. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17, 805–815 (1972).
Google Scholar
RStudio Team. RStudio: Integrated Development Environment for R.RStudio, http://www.rstudio.com/ (PBC, 2021).
Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304. https://doi.org/10.1177/0049124104268644 (2004).
Google Scholar
Hansen, P. J., Bjørnsen, P. K. & Hansen, B. W. Zooplankton grazing and growth: Scaling within the 2–2,000-μm body size range. Limnol. Oceanogr. 42, 687–704. https://doi.org/10.4319/lo.1997.42.4.0687 (1997).
Google Scholar
Source: Ecology - nature.com