in

Towards net-zero phosphorus cities

  • C40 Cities. 700+ cities in 53 countries now committed to halve emissions by 2030 and reach net zero by 2050. C40 Cities https://www.c40.org/news/cities-committed-race-to-zero/ (2021).

  • Watts, M. Cities spearhead climate action. Nat. Clim. Change 7, 537–538 (2017).

    Google Scholar 

  • Brownlie, W. J. et al. Global actions for a sustainable phosphorus future. Nat. Food 2, 71–74 (2021).

    CAS 

    Google Scholar 

  • El Wali, M., Golroudbary, S. R. & Kraslawski, A. Circular economy for phosphorus supply chain and its impact on social sustainable development goals. Sci. Total Environ. 777, 146060 (2021).

    CAS 

    Google Scholar 

  • Bai, X. et al. Defining and advancing a systems approach for sustainable cities. Curr. Opin. Environ. Sustain. 23, 69–78 (2016).

    Google Scholar 

  • De Boer, M. A., Wolzak, L. & Slootweg, J. C. Phosphorus: reserves, production, and applications. in Phosphorus Recovery and Recycling. (eds. Ohtake, H. & Tsuneda, S.) 75–100 (Springer, 2019).

  • Brownlie, W. J. et al. Chapter 2. Phosphorus reserves, resources and uses. In Our Phosphorus Future (eds. Brownlie, W. J., Sutton, M. A., Heal, K. V., Reay, D. S. & Spears, B. M.) (UK Centre for Ecology & Hydrology, 2022). https://doi.org/10.13140/RG.2.2.25016.83209.

  • Chow, E. China issues phosphate quotas to rein in fertiliser exports – analysts. Reuters (2022).

  • Klesty, V. Global food supply at risk from Russian invasion of Ukraine, Yara says. Reuters (2022).

  • Dumas, M., Frossard, E. & Scholz, R. W. Modeling biogeochemical processes of phosphorus for global food supply. Chemosphere 84, 798–805 (2011).

    CAS 

    Google Scholar 

  • Cordell, D., Turner, A. & Chong, J. The hidden cost of phosphate fertilizers: mapping multi-stakeholder supply chain risks and impacts from mine to fork. Glob. Change Peace Secur. 27, 1–21 (2015).

    Google Scholar 

  • Metson, G. S., Bennett, E. M. & Elser, J. J. The role of diet in phosphorus demand. Environmental Research Letters 7, 044043 (2012).

    Google Scholar 

  • Oita, A., Wirasenjaya, F., Liu, J., Webeck, E. & Matsubae, K. Trends in the food nitrogen and phosphorus footprints for Asia’s giants: China, India, and Japan. Resour. Conserv. Recycl. 157, 104752 (2020).

    Google Scholar 

  • Chen, M. & Graedel, T. E. A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Glob. Environ. Chang. 36, 139–152 (2016).

    Google Scholar 

  • Johnes, P. J. et al. Chapter 5. Phosphorus and water quality. in Our Phosphorus Future (eds. Brownlie, W. J., Sutton, M. A., Heal, K. V., Reay, D. S. & Spears, B. M.) (UK Centre for Ecology & Hydrology, 2022). https://doi.org/10.13140/RG.2.2.14950.50246.

  • Dodds, W. K. et al. Eutrophication of US freshwaters: analysis of potential economic damages. Environ. Sci. Technol. 43, 12–19 (2008).

    Google Scholar 

  • Watson, S. B. et al. The re-eutrophication of Lake Erie: Harmful algal blooms and hypoxia. Harmful Algae 56, 44–66 (2016).

    CAS 

    Google Scholar 

  • Rabalais, N. N. & Turner, R. E. Gulf of Mexico Hypoxia: Past, Present, and Future. Limnol. Oceanogr. Bull. 28, 117–124 (2019).

    Google Scholar 

  • Carstensen, J. & Conley, D. J. Baltic Sea Hypoxia Takes Many Shapes and Sizes. Limnol. Oceanog. Bull. 28, 125–129 (2019).

    Google Scholar 

  • Kanter, D. R. & Brownlie, W. J. Joint nitrogen and phosphorus management for sustainable development and climate goals. Environ. Sci. Policy 92, 1–8 (2019).

    CAS 

    Google Scholar 

  • Hamilton, D. P., Salmaso, N. & Paerl, H. W. Mitigating harmful cyanobacterial blooms: strategies for control of nitrogen and phosphorus loads. Aquat. Ecol. 50, 351–366 (2016).

    CAS 

    Google Scholar 

  • Brownlie, W. J. et al. Chapter 9. Towards our phosphorus future. In Our Phosphorus Future (eds. Brownlie, W. J., Sutton, M. A., Heal, K. V., Reay, D. S. & Spears, B. M.) (UK Centre for Ecology & Hydrology, 2022). https://doi.org/10.13140/RG.2.2.16995.22561.

  • MacDonald, G. K. et al. Guiding phosphorus stewardship for multiple ecosystem services. Ecosyst. Health Sustain. 2, e01251 (2016).

    Google Scholar 

  • Withers, P. J. A. et al. Stewardship to tackle global phosphorus inefficiency: The case of Europe. Ambio 44, 193–206 (2015).

    CAS 

    Google Scholar 

  • Withers, P. J. A. et al. Towards resolving the phosphorus chaos created by food systems. Ambio 49, 1076–1089 (2020).

    CAS 

    Google Scholar 

  • Withers, P. J. A. Closing the phosphorus cycle. Nat. Sustain. 2, 1001–1002 (2019).

    Google Scholar 

  • Langhans, C., Beusen, A. H. W., Mogollón, J. M. & Bouwman, A. F. Phosphorus for Sustainable Development Goal target of doubling smallholder productivity. Nat. Sustain. 5, 57–63 (2022).

    Google Scholar 

  • Kuss, P. & Nicholas, K. A. A dozen effective interventions to reduce car use in European cities: Lessons learned from a meta-analysis and transition management. Case Stud. Transp. Policy. 10, 1494–1513 (2022).

    Google Scholar 

  • Hobbie, S. E. et al. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. Proc. Natl. Acad. Sci. USA 114, E4116–E4116 (2017).

    Google Scholar 

  • Seto, K. C. et al. From low- to net-zero carbon cities: the next global agenda. Annu. Rev. Environ. Resour. 46, 377–415 (2021).

    Google Scholar 

  • Zhang, Y. Urban metabolism: A review of research methodologies. Environ. Pollut. 178, 463–473 (2013).

    CAS 

    Google Scholar 

  • Kissinger, M. & Stossel, Z. An integrated, multi-scale approach for modelling urban metabolism changes as a means for assessing urban sustainability. Sustain. Cities Soc. 67, 102695 (2021).

    Google Scholar 

  • Li, H. & Kwan, M.-P. Advancing analytical methods for urban metabolism studies. Resour. Conserv. Recycl. 132, 239–245 (2018).

    Google Scholar 

  • Goldstein, B., Birkved, M., Quitzau, M.-B. & Hauschild, M. Quantification of urban metabolism through coupling with the life cycle assessment framework: concept development and case study. Environ. Res. Lett. 8, 035024 (2013).

    CAS 

    Google Scholar 

  • Kovac, A. et al. Global Protocol for Community-Scale Greenhouse Gas Inventories— An Accounting and Reporting Standard for Cities Version 1.1. 190 https://ghgprotocol.org/greenhouse-gas-protocol-accounting-reporting-standard-cities.

  • Rogelj, J., Geden, O., Cowie, A. & Reisinger, A. Net-zero emissions targets are vague: three ways to fix. Nature 591, 365–368 (2021).

    CAS 

    Google Scholar 

  • Wiedmann, T. et al. Three-scope carbon emission inventories of global cities. J. Ind. Ecol. 25, 735–750 (2021).

    CAS 

    Google Scholar 

  • Metson, G. S. et al. Urban phosphorus sustainability: Systemically incorporating social, ecological, and technological factors into phosphorus flow analysis. Environ. Sci. Policy 47, 1–11 (2015).

    CAS 

    Google Scholar 

  • Harseim, L., Sprecher, B. & Zengerling, C. Phosphorus governance within planetary boundaries: the potential of strategic local resource planning in The Hague and Delfland, The Netherlands. Sustainability 13, 10801 (2021).

    CAS 

    Google Scholar 

  • Coutard, O. & Florentin, D. Resource ecologies, urban metabolisms, and the provision of essential services. J. Urban Technol. 29, 49–58 (2022).

    Google Scholar 

  • UDG at COP26 | Urban Design Events. Urban Design Group https://www.udg.org.uk/events/2021/udg-cop26 (2021).

  • Ramaswami, A., Russell, A. G., Culligan, P. J., Sharma, K. R. & Kumar, E. Meta-principles for developing smart, sustainable, and healthy cities. Science 352, 940–943 (2016).

    CAS 

    Google Scholar 

  • McPhearson, T. et al. A social-ecological-technological systems framework for urban ecosystem services. One Earth 5, 505–518 (2022).

    Google Scholar 

  • McPhearson, T., Haase, D., Kabisch, N. & Gren, Å. Advancing understanding of the complex nature of urban systems. Ecol. Indic. 70, 566–573 (2016).

    Google Scholar 

  • Metson, G. S. et al. Socio-environmental consideration of phosphorus flows in the urban sanitation chain of contrasting cities. Regional Environmental Change 18, 1387–1401 (2018).

    Google Scholar 

  • Iwaniec, D. M., Metson, G. S. & Cordell, D. P-FUTURES: Towards urban food & water security through collaborative design and impact. Curr. Opin. Environ. Sustain. 20, 1–7 (2016).

    Google Scholar 

  • Bulkeley, H. et al. Urban living laboratories: Conducting the experimental city? Eur. Urban. Reg. Stud. 26, 317–335 (2019).

    Google Scholar 

  • Beukers, E. & Bertolini, L. Learning for transitions: An experiential learning strategy for urban experiments. Environ. Innov. Soc. Transit. 40, 395–407 (2021).

    Google Scholar 

  • Ramaswami, A. et al. Carbon analytics for net-zero emissions sustainable cities. Nat. Sustain. 4, 460–463 (2021).

    Google Scholar 

  • Petit-Boix, A., Apul, D., Wiedmann, T. & Leipold, S. Transdisciplinary resource monitoring is essential to prioritize circular economy strategies in cities. Environ. Res. Lett. 17, 021001 (2022).

    Google Scholar 

  • WWAP. Wastewater: The Untapped Resource. https://www.unwater.org/publications/un-world-water-development-report-2017 (2017).

  • van Puijenbroek, P. J. T. M., Beusen, A. H. W. & Bouwman, A. F. Global nitrogen and phosphorus in urban waste water based on the Shared Socio-economic pathways. J. Environ. Manage. 231, 446–456 (2019).

    Google Scholar 

  • Kovacs, A. & Zavadsky, I. Success and sustainability of nutrient pollution reduction in the Danube River Basin: recovery and future protection of the Black Sea Northwest shelf. Water Int. 46, 176–194 (2021).

    Google Scholar 

  • Trimmer, J. T. & Guest, J. S. Recirculation of human-derived nutrients from cities to agriculture across six continents. Nat. Sustain. 1, 427–435 (2018).

    Google Scholar 

  • Powers, S. M. et al. Global opportunities to increase agricultural independence through phosphorus recycling. Earths Future 7, 370–383 (2019).

    Google Scholar 

  • Metson, G. S., Cordell, D., Ridoutt, B. & Mohr, S. Mapping phosphorus hotspots in Sydney’s organic wastes: a spatially-explicit inventory to facilitate urban phosphorus recycling. J. Urban Ecol. 4, 1–19 (2018).

    Google Scholar 

  • Hu, Y., Sampat, A. M., Ruiz-Mercado, G. J. & Zavala, V. M. Logistics Network Management of Livestock Waste for Spatiotemporal Control of Nutrient Pollution in Water Bodies. ACS Sustain. Chem. Eng. 7, 18359–18374 (2019).

    CAS 

    Google Scholar 

  • Mayer, B. K. et al. Total value of phosphorus recovery. Environ. Sci. Technol. 50, 6606–6620 (2016).

    CAS 

    Google Scholar 

  • van Hessen, J. An Assessment of Small-Scale Biodigester Programmes in the Developing World: The SNV and Hivos Approach. (Vrije Universiteit Amsterdam, 2014).

  • Harder, R., Wielemaker, R., Larsen, T. A., Zeeman, G. & Öberg, G. Recycling nutrients contained in human excreta to agriculture: Pathways, processes, and products. Crit. Rev. Environ. Sci. Technol. 49, 695–743 (2019).

    Google Scholar 

  • Metson, G. S. et al. Chapter 8. Consumption: the missing link towards phosphorus security. In Our Phosphorus Future (eds. Brownlie, W. J., Sutton, M. A., Heal, K. V., Reay, D. S. & Spears, B. M.) (UK Centre for Ecology & Hydrology, 2022). https://doi.org/10.13140/RG.2.2.36498.73925.

  • Qiao, M., Zheng, Y. M. & Zhu, Y. G. Material flow analysis of phosphorus through food consumption in two megacities in northern China. Chemosphere 84, 773–778 (2011).

    CAS 

    Google Scholar 

  • Forber, K. J., Rothwell, S. A., Metson, G. S., Jarvie, H. P. & Withers, P. J. A. Plant-based diets add to the wastewater phosphorus burden. Environ. Res. Lett. 15, 094018 (2020).

    CAS 

    Google Scholar 

  • UN Population Division. The World’s cities in 2018. https://digitallibrary.un.org/record/3799524 (2018).

  • Klöckner, C. A. A comprehensive model of the psychology of environmental behaviour-A meta-analysis. Glob. Environ. Change 23, 1028–1038 (2013).

    Google Scholar 

  • Nyborg, K. et al. Social norms as solutions. Science 354, 42–43 (2016).

    CAS 

    Google Scholar 

  • Vermeir, I. & Verbeke, W. Sustainable Food Consumption: Exploring the Consumer “Attitude – Behavioral Intention” Gap. J. Agric. Environ. Ethics 19, 169–194 (2006).

    Google Scholar 

  • Ullström, S., Stripple, J. & Nicholas, K. A. From aspirational luxury to hypermobility to staying on the ground: changing discourses of holiday air travel in Sweden. J. Sustain. Tour. https://doi.org/10.1080/09669582.2021.1998079 (2021).

  • Morris, T. H. Experiential learning—a systematic review and revision of Kolb’s model. Interact. Learn. Environ. 28, 1064–1077 (2020).

    Google Scholar 

  • Metson, G. S. & Bennett, E. M. Facilitators & barriers to organic waste and phosphorus re-use in Montreal. Elementa 3, 000070 (2015).

    Google Scholar 

  • Winkler, B., Maier, A. & Lewandowski, I. Urban gardening in germany: cultivating a sustainable lifestyle for the societal transition to a bioeconomy. Sustainability 11, 801 (2019).

    Google Scholar 

  • Kim, J. E. Fostering behaviour change to encourage low-carbon food consumption through community gardens. Int. J. Urban Sci. 21, 364–384 (2017).

    Google Scholar 

  • Fuhr, H., Hickmann, T. & Kern, K. The role of cities in multi-level climate governance: local climate policies and the 1.5 °C target. Curr. Opin. Environ. Sustain. 30, 1–6 (2018).

    Google Scholar 

  • Steffen, W. et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, 1259855 (2015).

    Google Scholar 

  • Santos, A. F., Almeida, P. V., Alvarenga, P., Gando-Ferreira, L. M. & Quina, M. J. From wastewater to fertilizer products: Alternative paths to mitigate phosphorus demand in European countries. Chemosphere 284, 131258 (2021).

    CAS 

    Google Scholar 

  • UNFCCC. Race To Zero Campaign. https://unfccc.int/climate-action/race-to-zero-campaign.

  • Locsin, J. A., Hood, K. M., Doré, E., Trueman, B. F. & Gagnon, G. A. Colloidal lead in drinking water: Formation, occurrence, and characterization. Crit. Rev. Environ. Sci. Technol. https://doi.org/10.1080/10643389.2022.2039549 (2022).

  • Li, Y. et al. The role of freshwater eutrophication in greenhouse gas emissions: A review. Sci. Total Environ. 768, 144582 (2021).

    CAS 

    Google Scholar 

  • Gong, H. et al. Synergies in sustainable phosphorus use and greenhouse gas emissions mitigation in China: Perspectives from the entire supply chain from fertilizer production to agricultural use. Sci. Total Environ. 838, 155997 (2022).

    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    On batteries, teaching, and world peace

    Engineers solve a mystery on the path to smaller, lighter batteries