in

Towards process-oriented management of tropical reefs in the anthropocene

  • McCauley, D. J. et al. Marine defaunation: animal loss in the global ocean. Science 347, 1255641 (2015).

    Article 

    Google Scholar 

  • Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).

    Article 

    Google Scholar 

  • Ceballos, G., Ehrlich, P. R. & Raven, P. H. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc. Natl Acad. Sci. USA 117, 13596–13602 (2020).

    Article 
    CAS 

    Google Scholar 

  • Brandl, S. J. et al. Extreme environmental conditions reduce coral reef fish biodiversity and productivity. Nat. Commun. 11, 3832 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    Article 
    CAS 

    Google Scholar 

  • Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J. & Graham, N. A. J. Coral reef ecosystem services in the Anthropocene. Funct. Ecol. https://doi.org/10.1111/1365-2435.13331 (2019).

  • Pereira, P. H. C. et al. Effectiveness of management zones for recovering parrotfish species within the largest coastal marine protected area in Brazil. Sci. Rep. 12, 12232 (2022).

    Article 
    CAS 

    Google Scholar 

  • Campbell, S. J. et al. Fishing restrictions and remoteness deliver conservation outcomes for Indonesia’s coral reef fisheries. Conserv. Lett 13, e12698 (2020).

    Article 

    Google Scholar 

  • Cinner, J. E. et al. Gravity of human impacts mediates coral reef conservation gains. Proc. Natl Acad. Sci. USA 115, E6116–E6125 (2018).

    Article 
    CAS 

    Google Scholar 

  • Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).

    Article 
    CAS 

    Google Scholar 

  • Mumby, P. J., Steneck, R. S., Roff, G. & Paul, V. J. Marine reserves, fisheries ban, and 20 years of positive change in a coral reef ecosystem. Conserv. Biol. 35, 1473–1483 (2021).

    Article 

    Google Scholar 

  • Harrison, H. B. et al. Larval export from marine reserves and the recruitment benefit for fish and fisheries. Curr. Biol. 22, 1023–1028 (2012).

    Article 
    CAS 

    Google Scholar 

  • Kerwath, S. E., Winker, H., Götz, A. & Attwood, C. G. Marine protected area improves yield without disadvantaging fishers. Nat. Commun. 4, 2347 (2013).

    Article 

    Google Scholar 

  • Di Lorenzo, M., Guidetti, P., Di Franco, A., Calò, A. & Claudet, J. Assessing spillover from marine protected areas and its drivers: a meta‐analytical approach. Fish Fish. 21, 906–915 (2020).

    Article 

    Google Scholar 

  • Ban, N. C. et al. Well-being outcomes of marine protected areas. Nat. Sustain. 2, 524–532 (2019).

    Article 

    Google Scholar 

  • Cinner, J. E. et al. Winners and losers in marine conservation: fishers’ displacement and livelihood benefits from marine reserves. Soc. Nat. Resour. 27, 994–1005 (2014).

    Article 

    Google Scholar 

  • Gurney, G. G. et al. Biodiversity needs every tool in the box: use OECMs. Nature 595, 646–649 (2021).

    Article 
    CAS 

    Google Scholar 

  • Smallhorn-West, P. F. et al. Hidden benefits and risks of partial protection for coral reef fisheries. Ecol. Soc. 27, art26 (2022).

    Article 

    Google Scholar 

  • Turnbull, J. W., Johnston, E. L. & Clark, G. F. Evaluating the social and ecological effectiveness of partially protected marine areas. Conserv. Biol. 35, 921–932 (2021).

    Article 

    Google Scholar 

  • Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).

    Article 
    CAS 

    Google Scholar 

  • Cinner, J. E. et al. Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science 368, 307–311 (2020).

    Article 
    CAS 

    Google Scholar 

  • McShane, T. O. et al. Hard choices: making trade-offs between biodiversity conservation and human well-being. Biol. Conserv. 144, 966–972 (2011).

    Article 

    Google Scholar 

  • MacNeil, M. A. et al. Recovery potential of the world’s coral reef fishes. Nature 520, 341–344 (2015).

    Article 
    CAS 

    Google Scholar 

  • McClanahan, T. R. et al. Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries. Proc. Natl Acad. Sci. USA 108, 17230–17233 (2011).

    Article 
    CAS 

    Google Scholar 

  • Morais, R. A. & Bellwood, D. R. Principles for estimating fish productivity on coral reefs. Coral Reefs 39, 1221–1231 (2020).

    Article 

    Google Scholar 

  • Lindeman, R. L. The trophic-dynamic aspect of ecology. Ecology 23, 399–417 (1942).

    Article 

    Google Scholar 

  • Pauly, D. & Froese, R. MSY needs no epitaph—but it was abused. ICES J. Mar. Sci. 78, 2204–2210 (2021).

    Article 

    Google Scholar 

  • Rindorf, A. et al. Strength and consistency of density dependence in marine fish productivity. Fish Fish. 23, 812–828 (2022).

    Article 

    Google Scholar 

  • Morais, R. A., Connolly, S. R. & Bellwood, D. R. Human exploitation shapes productivity–biomass relationships on coral reefs. Glob. Change Biol. 26, 1295–1305 (2020).

    Article 

    Google Scholar 

  • Kolding, J., Bundy, A., van Zwieten, P. A. M. & Plank, M. J. Fisheries, the inverted food pyramid. ICES J. Mar. Sci. 73, 1697–1713 (2016).

    Article 

    Google Scholar 

  • Morais, R. A. et al. Severe coral loss shifts energetic dynamics on a coral reef. Funct. Ecol. 34, 1507–1518 (2020).

    Article 

    Google Scholar 

  • Sala, E. & Giakoumi, S. No-take marine reserves are the most effective protected areas in the ocean. ICES J. Mar. Sci. 75, 1166–1168 (2018).

    Article 

    Google Scholar 

  • Edgar, G. J. & Stuart-Smith, R. D. Systematic global assessment of reef fish communities by the Reef Life Survey program. Sci. Data 1, 140007 (2014).

    Article 

    Google Scholar 

  • Parravicini, V. et al. Global patterns and predictors of tropical reef fish species richness. Ecography 36, 1254–1262 (2013).

    Article 

    Google Scholar 

  • Morais, R. A. & Bellwood, D. R. Global drivers of reef fish growth. Fish Fish. 19, 874–889 (2018).

    Article 

    Google Scholar 

  • Gislason, H., Daan, N., Rice, J. C. & Pope, J. G. Size, growth, temperature and the natural mortality of marine fish: natural mortality and size. Fish Fish. 11, 149–158 (2010).

    Article 

    Google Scholar 

  • Graham, N. A. J. et al. Human disruption of coral reef trophic structure. Curr. Biol. 27, 231–236 (2017).

    Article 
    CAS 

    Google Scholar 

  • Froese, R. & Pauly, D. (eds.). FishBase. Version 06/2022. https://www.fishbase.org (2022).

  • Cochrane, K. L. Reconciling sustainability, economic efficiency and equity in marine fisheries: has there been progress in the last 20 years? Fish Fish. 22, 298–323 (2021).

    Article 

    Google Scholar 

  • Morais, R. A., Siqueira, A. C., Smallhorn-West, P. F. & Bellwood, D. R. Spatial subsidies drive sweet spots of tropical marine biomass production. PLoS Biol. 19, e3001435 (2021).

    Article 
    CAS 

    Google Scholar 

  • Hamilton, M. et al. Climate impacts alter fisheries productivity and turnover on coral reefs. Coral Reefs https://doi.org/10.1007/s00338-022-02265-4 (2022).

  • Cooke, R. et al. Anthropogenic disruptions to longstanding patterns of trophic-size structure in vertebrates. Nat Ecol Evol. 6, 684–692 (2022).

    Article 

    Google Scholar 

  • Eddy, T. D. et al. Energy flow through marine ecosystems: confronting transfer efficiency. Trends Ecol. Evol. 36, 76–86 (2021).

    Article 

    Google Scholar 

  • Devillers, R. et al. Reinventing residual reserves in the sea: are we favouring ease of establishment over need for protection? Aquat. Conserv. Mar. Freshw. Ecosyst. 25, 480–504 (2015).

    Article 

    Google Scholar 

  • Fontoura, L. et al. Protecting connectivity promotes successful biodiversity and fisheries conservation. Science 375, 336–340 (2022).

    Article 
    CAS 

    Google Scholar 

  • Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).

    Article 
    CAS 

    Google Scholar 

  • Agardy, T., di Sciara, G. N. & Christie, P. Mind the gap: addressing the shortcomings of marine protected areas through large scale marine spatial planning. Mar. Policy 35, 226–232 (2011).

    Article 

    Google Scholar 

  • Robinson, J. P. W. et al. Habitat and fishing control grazing potential on coral reefs. Funct. Ecol. 34, 240–251 (2020).

    Article 

    Google Scholar 

  • Robinson, J. P. W. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183–190 (2019).

    Article 

    Google Scholar 

  • Dudley, N. et al. The essential role of other effective area-based conservation measures in achieving big bold conservation targets. Glob. Ecol. Conserv. 15, e00424 (2018).

    Article 

    Google Scholar 

  • Zupan, M. et al. How good is your marine protected area at curbing threats? Biol. Conserv. 221, 237–245 (2018).

    Article 

    Google Scholar 

  • Pollnac, R. et al. Marine reserves as linked social–ecological systems. Proc. Natl Acad. Sci. USA 107, 18262–18265 (2010).

    Article 
    CAS 

    Google Scholar 

  • McClanahan, T. R., Marnane, M. J., Cinner, J. E. & Kiene, W. E. A comparison of marine protected areas and alternative approaches to coral-reef management. Curr. Biol. 16, 1408–1413 (2006).

    Article 
    CAS 

    Google Scholar 

  • Smallhorn-West, P. F., Weeks, R., Gurney, G. & Pressey, R. L. Ecological and socioeconomic impacts of marine protected areas in the South Pacific: assessing the evidence base. Biodivers. Conserv. 29, 349–380 (2020).

    Article 

    Google Scholar 

  • Cinner, J. E. et al. Sixteen years of social and ecological dynamics reveal challenges and opportunities for adaptive management in sustaining the commons. Proc. Natl Acad. Sci. USA 116, 26474–26483 (2019).

    Article 
    CAS 

    Google Scholar 

  • Wilson, S. K. et al. Habitat degradation and fishing effects on the size structure of coral reef fish communities. Ecol. Appl. 20, 442–451 (2010).

    Article 
    CAS 

    Google Scholar 

  • Nash, K. L. & Graham, N. A. J. Ecological indicators for coral reef fisheries management. Fish Fish. 17, 1029–1054 (2016).

    Article 

    Google Scholar 

  • Brandl, S. J., Goatley, C. H. R., Bellwood, D. R. & Tornabene, L. The hidden half: ecology and evolution of cryptobenthic fishes on coral reefs. Biol. Rev. 93, 1846–1873 (2018).

    Article 

    Google Scholar 

  • Willis, T. J. Visual census methods underestimate density and diversity of cryptic reef fishes. J. Fish. Biol. 59, 1408–1411 (2001).

    Article 

    Google Scholar 

  • Allen, K. R. Relation between production and biomass. J. Fish. Res. Board Can. 28, 1573–1581 (1971).

    Article 

    Google Scholar 

  • Leigh, E. G. On the relation between the productivity, biomass, diversity, and stability of a community. Proc. Natl Acad. Sci. USA 53, 777–783 (1965).

    Article 
    CAS 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  • Cinner, J. E., Daw, T. & McClanahan, T. R. Socioeconomic factors that affect artisanal fishers’ readiness to exit a declining fishery. Conserv. Biol. 23, 124–130 (2009).

    Article 
    CAS 

    Google Scholar 

  • Cinner, J. E. et al. Linking social and ecological systems to sustain coral reef fisheries. Curr. Biol. 19, 206–212 (2009).

    Article 
    CAS 

    Google Scholar 

  • Hicks, C. C., Crowder, L. B., Graham, N. A., Kittinger, J. N. & Cornu, E. L. Social drivers forewarn of marine regime shifts. Front. Ecol. Environ. 14, 252–260 (2016).

    Article 

    Google Scholar 

  • Espinosa-Romero, M. J., Rodriguez, L. F., Weaver, A. H., Villanueva-Aznar, C. & Torre, J. The changing role of NGOs in Mexican small-scale fisheries: from environmental conservation to multi-scale governance. Mar. Policy 50, 290–299 (2014).

    Article 

    Google Scholar 

  • Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).

    Article 

    Google Scholar 

  • Edgar, G. J. et al. Establishing the ecological basis for conservation of shallow marine life using Reef Life Survey. Biol. Conserv. 252, 108855 (2020).

    Article 

    Google Scholar 

  • Selig, E. R. et al. Mapping global human dependence on marine ecosystems. Conserv. Lett. 12, e12617 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Crop diversification and parasitic weed abundance: a global meta-analysis

    With new heat treatment, 3D-printed metals can withstand extreme conditions