in

Trade-off between tree planting and wetland conservation in China

  • Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • MacDicken, K. G. Global forest resources assessment 2015: what, why and how? For. Ecol. Manag. 352, 3–8 (2015).

    Google Scholar 

  • Li, M.-M. et al. An overview of the “Three-North” Shelterbelt project in China. Forestry Stud. China 14, 70–79 (2012).

    ADS 

    Google Scholar 

  • Zhang, P. et al. China’s forest policy for the 21st century. Science 288, 2135–2136 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, Y. et al. Balancing green and grain trade. Nat. Geosci. 8, 739–741 (2015).

    ADS 

    Google Scholar 

  • Xu, J., Yin, R., Li, Z. & Liu, C. China’s ecological rehabilitation: unprecedented efforts, dramatic impacts, and requisite policies. Ecol. Econ. 57, 595–607 (2006).

    Google Scholar 

  • Piao, S., Fang, J., Liu, H. & Zhu, B. NDVI-indicated decline in desertification in China in the past two decades. Geophys. Res. Lett. 32, L06402 (2005).

    ADS 

    Google Scholar 

  • Wang, X., Chen, F., Hasi, E. & Li, J. Desertification in China: an assessment. Earth Sci. Rev. 88, 188–206 (2008).

    ADS 

    Google Scholar 

  • Ouyang, Z. et al. Improvements in ecosystem services from investments in natural capital. Science 352, 1455–1459 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bryan, B. A. et al. China’s response to a national land-system sustainability emergency. Nature 559, 193–204 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 6, 1019–1022 (2016).

    ADS 

    Google Scholar 

  • Cao, S., Zhang, J., Chen, L. & Zhao, T. Ecosystem water imbalances created during ecological restoration by afforestation in China, and lessons for other developing countries. J. Environ. Manag. 183, 843–849 (2016).

    Google Scholar 

  • Liu, Y. et al. Recent trends in vegetation greenness in China significantly altered annual evapotranspiration and water yield. Environ. Res. Lett. 11, 094010 (2016).

    ADS 

    Google Scholar 

  • Yao, Y. et al. The effect of afforestation on soil moisture content in Northeastern China. PLoS ONE 11, e0160776 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • An, W. et al. Exploring the effects of the “Grain for Green” program on the differences in soil water in the semi-arid Loess Plateau of China. Ecol. Eng. 107, 144–151 (2017).

    Google Scholar 

  • Li, Y. et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 4, eaar4182 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Global Wetland Outlook: State of the World’s Wetlands and their Services to People (Ramsar Convention Secretariat, 2018).

  • Baumgartner, R. J. Sustainable development goals and the forest sector—a complex relationship. Forests 10, 152 (2019).

    Google Scholar 

  • 15-year Comprehensive Plan for Ecological System Protection and Recovery Work (National Development and Reform Commission, 2020).

  • Prigent, C., Jimenez, C. & Bousquet, P. Satellite-derived global surface water extent and dynamics over the last 25 years (GIEMS-2). J. Geophys. Res. Atmos. 125, e2019JD030711 (2020).

    ADS 

    Google Scholar 

  • Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cy. 19, GB1015 (2005).

    ADS 

    Google Scholar 

  • Tootchi, A. Development of a global wetland map and application to describe hillslope hydrology in the ORCHIDEE land surface model. Sorbonne Université, https://www.metis.upmc.fr/~ducharne/documents/These_Tootchi_revised_11Sep2019.pdf (2019).

  • Beven, K. J. & Kirkby, M. J. A physically based, variable contributing area model of basin hydrology / Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. B. 24, 43–69 (1979).

    Google Scholar 

  • Stocker, B. D., Spahni, R. & Joos, F. DYPTOP: a cost-efficient TOPMODEL implementation to simulate sub-grid spatio-temporal dynamics of global wetlands and peatlands. Geosci. Model Dev. 7, 3089–3110 (2014).

    ADS 

    Google Scholar 

  • Xi, Y., Peng, S., Ciais, P. & Chen, Y. Future impacts of climate change on inland Ramsar wetlands. Nat. Clim. Chang. 11, 45–51 (2021).

    ADS 

    Google Scholar 

  • Kim, H. Global soil wetness project phase 3 atmospheric boundary conditions (Experiment 1). Data Integration and Analysis System (DIAS). (2017).

  • Cucchi, M. et al. WFDE5: bias-adjusted ERA5 reanalysis data for impact studies. Earth Syst. Sci. Data 12, 2097–2120 (2020).

    ADS 

    Google Scholar 

  • Donchyts, G. et al. Earth’s surface water change over the past 30 years. Nat. Clim. Chang. 6, 810–813 (2016).

    ADS 

    Google Scholar 

  • Zhu, Q. et al. Climate-driven increase of natural wetland methane emissions offset by human-induced wetland reduction in China over the past three decades. Sci. Rep. 6, 38020 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mao, D. et al. Remote observations in China’s Ramsar Sites: wetland dynamics, anthropogenic threats, and implications for sustainable development goals. J. Remote Sens. 2021, 9849343 (2021).

    ADS 

    Google Scholar 

  • Budyko, M. I. Climate and Life (Academic Press, 1974).

  • Zhang, L., Dawes, W. R. & Walker, G. R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 37, 701–708 (2001).

    ADS 

    Google Scholar 

  • Woodward, C., Shulmeister, J., Larsen, J., Jacobsen, G. E. & Zawadzki, A. The hydrological legacy of deforestation on global wetlands. Science 346, 844–847 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Z., Zimmermann, N. E., Kaplan, J. O. & Poulter, B. Modeling spatiotemporal dynamics of global wetlands: comprehensive evaluation of a new sub-grid TOPMODEL parameterization and uncertainties. Biogeosciences 13, 1387–1408 (2016).

    ADS 

    Google Scholar 

  • Ringeval, B. et al. Modelling sub-grid wetland in the ORCHIDEE global land surface model: evaluation against river discharges and remotely sensed data. Geosci. Model Dev. 5, 941 (2012).

    ADS 

    Google Scholar 

  • Tootchi, A., Jost, A. & Ducharne, A. Multi-source global wetland maps combining surface water imagery and groundwater constraints. Earth Syst. Sci. Data 11, 189–220 (2019).

    ADS 

    Google Scholar 

  • List of Protected Wetlands in China. http://www.zrbhq.cn/web/confirm.html (National Forestry and Grassland Administration, 2011).

  • Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 27, 2171–2186 (2013).

    ADS 

    Google Scholar 

  • Lu, F. et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl Acad. Sci. USA 115, 4039–4044 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Warszawski, L. et al. The inter-sectoral impact model intercomparison project (ISI–MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Levia, D. F. et al. Homogenization of the terrestrial water cycle. Nat. Geosci. 13, 656–658 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Zhang, J., Fu, B., Stafford-Smith, M., Wang, S. & Zhao, W. Improve forest restoration initiatives to meet sustainable development goal 15. Nat. Ecol. Evol. 5, 10–13 (2020).

    Google Scholar 

  • Zeng, Z. et al. Impact of earth greening on the terrestrial water cycle. J. Clim. 31, 2633–2650 (2018).

    ADS 

    Google Scholar 

  • Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Meier, R. et al. Empirical estimate of forestation-induced precipitation changes in Europe. Nat. Geosci. 14, 473–478 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Bosch, J. M. & Hewlett, J. D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 55, 3–23 (1982).

    ADS 

    Google Scholar 

  • Teuling, A. J. & Hoek van Dijke, A. J. Forest age and water yield. Nature 578, E16–E18 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Doelman, J. C. et al. Afforestation for climate change mitigation: Potentials, risks and trade-offs. Glob. Change Biol. 26, 1576–1591 (2020).

    ADS 

    Google Scholar 

  • Peng, S. et al. Afforestation in China cools local land surface temperature. Proc. Natl Acad. Sci. USA 111, 2915–2919 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seddon, N., Turner, B., Berry, P., Chausson, A. & Girardin, C. A. J. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Chang. 9, 84–87 (2019).

    ADS 

    Google Scholar 

  • Brown, I. Challenges in delivering climate change policy through land use targets for afforestation and peatland restoration. Environ. Sci. Policy 107, 36–45 (2020).

    Google Scholar 

  • The 2nd – 9th National Forest Resource Inventory Report (State Forestry Administration of the People’s Republic of China, 1973–2018).

  • Fang, J. et al. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Glob. Change Biol. 20, 2019–2030 (2014).

    ADS 

    Google Scholar 

  • Hou, X. Vegetation atlas of China. Chinese Academy of Science, the editorial board of vegetation map of China (2001).

  • Xi, Y. et al. Contributions of climate change, CO2, land-use change, and human activities to changes in river flow across 10 Chinese Basins. J. Hydrometeorol. 19, 1899–1914 (2018).

    ADS 

    Google Scholar 

  • Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene – HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).

    ADS 

    Google Scholar 

  • Fluet-Chouinard, E., Lehner, B., Rebelo, L.-M., Papa, F. & Hamilton, S. K. Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sens. Environ. 158, 348–361 (2015).

    ADS 

    Google Scholar 

  • Herold, M., Van Groenestijn, A., Kooistra, L., Kalogirou, V. & Arino, O. Land cover CCI, product user guide version 2.0. https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (2015).

  • Pekel, J. F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Zhou, G. et al. Global pattern for the effect of climate and land cover on water yield. Nat. Commun. 6, 5918 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, H. et al. Changing retention properties of catchments and their influence on runoff under climate change. Environ. Res. Lett. 13, 094019 (2018).

    ADS 

    Google Scholar 

  • Berghuijs, W. R., Larsen, J. R., van Emmerik, T. H. M. & Woods, R. A. A global assessment of runoff sensitivity to changes in precipitation, potential evaporation, and other factors. Water Resour. Res. 53, 8475–8486 (2017).

    ADS 

    Google Scholar 

  • Piao, S. et al. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc. Natl Acad. Sci. USA 104, 15242 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guimberteau, M. et al. Testing conceptual and physically based soil hydrology schemes against observations for the Amazon Basin. Geosci. Model Dev. 7, 1115–1136 (2014).

    ADS 

    Google Scholar 

  • Traore, A. K. et al. Evaluation of the ORCHIDEE ecosystem model over Africa against 25 years of satellite-based water and carbon measurements. J. Geophys. Res. Biogeosci. 119, 1554–1575 (2014).

    Google Scholar 

  • de Rosnay, P. & Polcher, J. Impact of a physically based soil water flow and soil‐plant interaction representation for modeling large‐scale land surface processes. J. Geophys. Res. Atmos. 107, ACL 3-1–ACL 3-19 (2002).

    Google Scholar 

  • Campoy, A. et al. Influence of soil bottom hydrological conditions on land surface fluxes and climate in a general circulation model. J. Geophys. Res. Atmos. 118, 10725–10739 (2013).

    ADS 

    Google Scholar 

  • Guimberteau, M. et al. Discharge simulation in the sub-basins of the Amazon using ORCHIDEE forced by new datasets. Hydrol. Earth Syst. Sci. 16, 11171–11232 (2012).

    Google Scholar 

  • Boucher, O. et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Sy. 12, e2019MS002010 (2020).

    ADS 

    Google Scholar 

  • Fan, Y. et al. Hillslope hydrology in global change research and earth system modeling. Water Resour. Res. 55, 1737–1772 (2019).

    ADS 

    Google Scholar 

  • Rayner, P. J. et al. Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS). Glob. Biogeochem. Cy. 19, GB2026 (2005).

    ADS 

    Google Scholar 

  • Ducharne, A. Reducing scale dependence in TOPMODEL using a dimensionless topographic index. Hydrol. Earth Syst. Sci. 13, 2399–2412 (2009).

    ADS 

    Google Scholar 

  • Niu, G., Yang, Z., Dickinson, R. E. & Gulden, L. E. A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. J. Geophys. Res. 110, D21106 (2005).

    ADS 

    Google Scholar 

  • Xi, Y. et al. Monthly inundated fraction over China for 2000-2015 from GIEMS-2 (Version v1.0). Zenodo https://doi.org/10.5281/zenodo.5750962 (2021).

  • Xi, Y. et al. Code of wetland simulation for trade-off between tree planting and wetland conservation in China (Version v1.0). Zenodo https://doi.org/10.5281/zenodo.4435082 (2021).


  • Source: Ecology - nature.com

    MIT announces five flagship projects in first-ever Climate Grand Challenges competition

    Genomic evidence for homoploid hybrid speciation between ancestors of two different genera