Epidemiological description of exhibition farm outbreak
The index farm where highly pathogenic avian influenza (HPAI) H5N1 virus in captive birds occurred was an exhibition farm in St. John’s, Province of Newfoundland and Labrador, Canada. The farm housed 409 birds of different species, namely chickens, guineafowl, peafowl, emus, domestic ducks, domestic geese, and domestic turkeys. On 9th December 2021, the farm owner first noticed mortality. On 13th December, the farm owner reported the increased mortality to a local veterinarian. Autopsies on four chickens showed swollen heads and cutaneous haemorrhages. Oropharyngeal and cloacal swabs from these chickens tested positive for H5 avian influenza virus at the Atlantic Veterinary College, University of Prince Edward Island, and the Canadian Food Inspection Agency (CFIA) was notified. On 16th December, by which time 306 birds (mostly chickens, turkeys and guineafowl) had died, staff of the CFIA collected tissue samples from dead chickens, as well as oropharyngeal and cloacal swabs and sera from different species of captive birds still present (Table 1), after which all remaining captive birds were culled. All oropharyngeal and cloacal swabs tested positive for HPAI virus of the subtype H5N1 by real-time RT-PCR, and all sera tested positive for influenza nucleoprotein antibodies by ELISA. On 20th December, the CFIA confirmed the diagnosis of HPAI of the subtype H5N1.
Wild birds were frequently observed co-mingling with the captive population. Captive birds except emus were allowed to move freely in and out of the open pens in which they were housed. At an on-site pond, domestic ducks were reported to mingle with free-living mallards (scientific names of wild birds in Table 2), and a snowy egret had been observed around 2nd to 6th December. Other wild birds reported on the farm were common starlings, feral pigeons, and unspecified gulls.
Retrospectively, HPAI H5N1 virus also was identified in tissues of a great black-backed gull found at a nearby pond in St. John’s. The gull had been found ill on 26th November 2021 and taken to a local wildlife rehabilitation centre, where it died the following day.
Phylogenetic analysis
Phylogenetic analyses were performed to compare the genome sequences of the Newfoundland viruses from the exhibition farm birds and a great black-backed gull found nearby to other influenza viruses in the database. Based on BLAST analysis all eight gene segments of the virus had a Eurasian origin, and the virus was identified as a clade 2.3.4.4b H5N1 virus. Based on maximum likelihood and time-resolved trees inferred by use of whole genome sequences, the Newfoundland viruses had a shared common ancestor with European viruses circulating in early 2021 (Figs. 1, 2). The dates for the most recent common ancestor (MRCA) of all gene segments ranged from December 2019 to April 2021 (Table 3). There was no evidence that the Newfoundland viruses were genetically closely related to other current or recent viruses circulating in Europe. In contrast to currently circulating European viruses, the sequences of the Newfoundland viruses had no evidence of reassortment with other avian influenza viruses after ancestral emergence (Fig. 3). The virus from the great black-backed gull was highly similar to those from the exhibition farm, except for a small number of nucleotide differences in the neuraminidase (N) gene segment.
Analysis of avian migration and potential routes for HPAI H5 virus to be carried across the Atlantic with migrating birds
There are several pathways for HPAI H5N1 virus to be carried across the Atlantic with migrating birds, based on the multitude of migration routes of wild birds and their overlapping ranges at breeding, stop-over, and wintering sites. Ring-recovery data confirm the regular movements of wild birds from Europe to Iceland and other North Atlantic islands, and from there to North America, and also provide evidence for direct movements of for example seabirds and gulls (Supplementary Table 1). Ringed individuals with a European origin have been found on Newfoundland for 10 of the 24 species in Supplementary Table 1: barnacle goose (1 ringed individual), Eurasian wigeon (5), Eurasian teal (1), great skua (13), European herring gull (1), black-headed gull (1), black-legged kittiwake (102), purple sandpiper (1), Brunnich’s guillemot (15), and Atlantic puffin (50). Given that the most likely ancestor of the virus detected in Newfoundland was circulating in Northwest Europe between the beginning of the 2020/2021 outbreak in Europe in October 2020 and April 2021 (see above), likely routes include spring migration of bird species moving to Icelandic, Greenlandic or Canadian High Arctic breeding grounds, or migration directly across the Atlantic Ocean (Fig. 4).
The first possible route via Iceland seems to be the strongest link between Newfoundland and Europe14,15,16,17, because it is a meeting point of breeding bird populations which winter in Europe as well as along the East coast of North America. Numerous species, totaling almost two million individual birds, migrate annually from northwestern Europe to breeding grounds in Iceland and beyond. Several populations breed on Iceland, including swans (whooper swan) (Supplementary Table 1), geese (greylag goose, pink-footed goose), ducks (Eurasian wigeon, Eurasian teal, Northern pintail), gulls (great- and lesser black-backed gull, black-headed gull, black-legged kittiwake) and shorebirds (common ringed plover, purple sandpiper, Supplementary Table 1). In addition, several species (e.g. barnacle geese and pink-footed geese) migrating to breeding grounds further away (Greenland and/or Canadian High Arctic) make spring and autumn stopovers in Iceland18,19. This creates potential for the virus to have been spread northwards to Iceland (or further northward) in spring, where it could have circulated among breeding birds, or transmitted during autumn migration by species returning from the Arctic. Several Iceland-breeding species of ducks (Eurasian wigeon, Eurasian teal, tufted duck), gulls (lesser black-backed gull, black-legged kittiwake, black-headed gull) and alcids (Brunnich’s guillemot, Atlantic puffin) winter along the Atlantic coast of North America in variable numbers (Supplementary Table 1). If the virus was transmitted to one of these populations during their stay on Iceland, it could have been spread to Newfoundland during the subsequent autumn migration. Importantly, Iceland-breeding Eurasian wigeons or Eurasian teals could be responsible for both the journey to Iceland from European wintering grounds, as well as the journey from Iceland to Newfoundland, where these species are frequently encountered as vagrants (Supplementary Table 1)20,21.
The second possible route is via species that migrate from northwestern Europe to the Canadian High Arctic and/or Northwest Greenland. These include shorebirds (e.g. ruddy turnstone, red knot) and some geese (light-bellied brent goose and greater white-fronted goose). If the virus circulated in these breeding populations and then moved to other coastal marine bird populations bordering Baffin Bay, which include huge numbers of colonial seabirds and marine waterfowl22,23, the virus could have followed a coastal or even pelagic route south with the large autumn migration of Arctic marine birds (various sea ducks, auks and larids)24,25 to emerge in Newfoundland. Alternatively, shorebirds and waterfowl may have played a role: several European-wintering populations have overlapping breeding grounds with populations wintering along the east coast of North America. Regarding geese, greater white-fronted geese share breeding grounds in western Greenland with Canada geese26,27, which migrate south along the Canadian Atlantic coast. Also, brent geese have overlapping breeding grounds with snow geese18. In addition, individual barnacle geese and pink-footed geese breeding in Greenland could also have travelled south to Newfoundland carrying the virus, as these birds are regular vagrants to the North American Atlantic coast28. While geese occur only in small numbers on Newfoundland, two barnacle geese and four pink-footed geese, probably originating from Greenland breeding grounds, were observed in the autumn of 2021. St. John’s is the first major population center on a coastal route south from Baffin Bay/Davis Strait and along the Labrador Shelf, so emergence in eastern Newfoundland is consistent with this route.
Three wild bird species involved in the Iceland and/or Greenland/High Canadian Arctic routes deserve particular attention. Eurasian wigeon have been prominently involved in outbreaks in Eurasia, and are considered prime candidates for carrying HPAI virus over long distances29. Also, during the first stages of an outbreak they are one of the first species to be detected HPAI virus positive, often without clinical signs. Barnacle geese and greylag geese, which congregate in Iceland, were in the top three most abundant species detected H5-positive in Europe in late winter and early spring 20215. Given that both greylag and barnacle geese have populations breeding on Iceland/Greenland and wintering in Europe (particularly the UK), these two species are high on the list of probable vectors that transported the virus to Iceland/Greenland and finally to Newfoundland. The high involvement of infected geese in the HPAI dynamics, which was not seen before October 2020, together with the unusually high levels of HPAI H5 virus presence in wild birds in Northwest Europe in spring 2021, might also explain why HPAI H5 virus spread to Newfoundland this winter (2021/2022), and not in the previous winters (2020/2021, 2016/2017, 2014/2015, 2005/2006). It is, however, striking that no cases of HPAI H5 virus have been recorded on Iceland in 2021.
A third possible, pelagic, route is directly across the Atlantic Ocean. Such a route could have started with coastal and pelagic seabirds in Northwest Europe, where the virus may have remained undetected for much of the summer of 2021. A subsequent migration of seabirds to Newfoundland waters in the autumn of 2021 could have brought the virus to North America. The large populations of black-legged kittiwakes and northern fulmars that breed in the U.K. have long been known to frequent Newfoundland waters30, and these movements have been corroborated by recent telemetry studies31. Further, recent telemetry information reveals that millions of pelagic seabirds breeding all across the Atlantic congregate over the Mid-Atlantic Ridge in the central North Atlantic at all times of year32, making a pelagic transmission route a possibility. From the pelagic wintering grounds off Newfoundland, a species that uses both pelagic and coastal habitats, possibly a gull, may have brought the virus to shore in St. John’s. Trans-Atlantic transmission via seabirds has been suggested for LPAI viruses, including detection of mosaic Eurasian-North American viruses in gulls and alcids12,33,34,35.
For the time period and geographical frame considered, HPAI-H5-positive species included ducks (Eurasian wigeon, mallard, common eider), geese (barnacle, greylag, brent, pink-footed and greater white-fronted goose), swans (whooper), gulls (black-headed, herring, lesser black-backed, great black-backed), and shorebirds (red knot, ruddy turnstone) (Supplementary Table 2). Of these 15 species, ringed individuals with a European origin have been recorded on Newfoundland for barnacle goose (1 ringed individual), Eurasian wigeon (5), great skua (13), and black-headed gull (1) (Supplementary Table 1). Ringed individuals with a European origin have been found on Newfoundland for 5 species which were found to be HPAI-H5-positive between October 2020 and April 2021, such as Barnacle Goose (1), Eurasian Wigeon (5), Great Skua (13), Black-headed Gull (1). These species might be considered to be possible carriers of HPAI H5 virus from Europe in late winter 2020/2021 or early spring 2021 partly or all the way to Newfoundland. However, given the incompleteness of sampling and the possibility of wild birds carrying HPAI virus subclinically, the involvement of other wild bird species in transatlantic virus transport cannot be ruled out.
Having reached the Avalon Peninsula of Newfoundland via one of above routes, the virus may have spread further within the abundant local populations of ducks and gulls wintering in the city of St. John’s. The peridomestic populations of some of these species may be candidates for incursion of the virus into the farm in St John’s.
Source: Ecology - nature.com