in

Transgenerational effects of grandparental and parental diets combine with early-life learning to shape adaptive foraging phenotypes in Amblyseius swirskii

  • Avital, E. & Jablonka, E. Animal Traditions: Behavioural Inheritance in Evolution. (Cambridge University Press, 2000).

  • Bonduriansky, R. & Day, T. Nongenetic inheritance and its evolutionary implications. Annu. Rev. Ecol. Evol. Syst. 40, 103–125 (2009).

    Google Scholar 

  • Mousseau, T. A. & Fox, C. W. Maternal Effects as Adaptations. (Oxford University Press, 1998).

  • Mousseau, T. A. & Fox, C. W. The adaptive significance of maternal effects. Trends Ecol. Evol. 13, 403–407 (1998b).

    CAS 
    PubMed 

    Google Scholar 

  • Jablonka, E. & Lamb, M. J. Evolution in four dimensions. Genetic, Epigenetic, Behavioral and Symbolic Variation in the History of Life. Revised Edition. (MIT Press, 2014).

  • Uller, T. Developmental plasticity and the evolution of parental effects. Trends Ecol. Evol. 23, 432–438 (2018).

    Google Scholar 

  • Bell, A. M. & Hellmann, J. K. An integrative framework for understanding the mechanisms and multigenerational consequences of transgenerational plasticity. Annu. Rev. Ecol. Evol. Syst. 50, 97–118 (2019).

    Google Scholar 

  • Marshall, D. J. & Uller, T. When is a maternal effect adaptive? Oikos 116, 1957–1963 (2007).

    Google Scholar 

  • Yin, J., Zhou, M., Lin, Z., Li, Q. Q. & Zhang, Y.-Y. Transgenerational effects benefit offspring across diverse environments: a meta-analysis in plants and animals. Ecol. Lett. 22, 1976–1986 (2019).

    PubMed 

    Google Scholar 

  • Wolf, J. B. & Wade, M. J. What are maternal effects (and what are they not)? Philos. Trans. R. Soc. B 364, e1115 (2008).

    Google Scholar 

  • Kilner, R. M. et al. Parental effects alter the adaptive value of an adult behavioural trait. eLife 4, e07340 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • McNamara, J. M., Dall, S. R. X., Hammerstein, P. & Leimar, O. Detection vs. selection: integration of genetic, epigenetic and environmental cues in fluctuating environments. Ecol. Lett. 19, 1267–1276 (2016).

    PubMed 

    Google Scholar 

  • Deas, J. B., Blondel, L. & Extavour, C. G. Ancestral and offspring nutrition interact to affect life-history traits in Drosophila melanogaster. Proc. R. Soc. B 286, 20182778 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stamps, J. A. & Bell, A. M. Combining information from parental and personal experiences: simple processes generate diverse outcomes. PLoS ONE 16, e0250540 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Agrawal, A. A., Laforsch, C. & Tollrian, R. Transgenerational induction of defences in animals and plants. Nature 401, 60–63 (1999).

    CAS 

    Google Scholar 

  • Remy, J. J. Stable inheritance of an acquired behavior in Caenorhabditis elegans. Curr. Biol. 20, R877–R878 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Shama, L. N. S. & Wegner, K. M. Grandparental effects in marine sticklebacks: transgenerational plasticity across multiple generations. J. Evol. Biol. 27, 2297–2307 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Crocker, K. C. & Hunter, M. D. Environmental causes and transgenerational consequences of ecdysteroid hormone provisioning in Acheta domesticus. J. Insect Physiol. 109, 69–78 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Sarker, G. & Peleg-Raibstein, D. Maternal overnutrition induces long-term cognitive deficits across several generations. Nutrients 11, 7 (2019).

    CAS 

    Google Scholar 

  • Hellmann, J. K., Carlsson, E. R. & Bell, A. M. Sex-specific plasticity across generations II: grandpaternal effects are lineage specific and sex specific. J. Anim. Ecol. 89, 2800–2819 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mahaq, O. The effects of dietary edible bird nest supplementation on learning and memory functions of multigenerational mice. Brain Behav. 10, e01817 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ranade, S. C. et al. Different types of nutritional deficiencies affect different domains of spatial memory function checked in a radial arm maze. Neuroscience 152, 859–866 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • De Souza, A. S., Fernandes, F. S., do Carmo, T. & das Gracas, M. Effects of maternal malnutrition and postnatal nutritional rehabilitation on brain fatty acids, learning, and memory. Nutr. Rev. 69, 132–144 (2011).

    PubMed 

    Google Scholar 

  • Munch, K. L. et al. Maternal effects impact decision-making in a viviparous lizard. Biol. Lett. 14, 20170556 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, C. et al. The learning ability and memory retention of broiler breeders: 2 transgenerational effects of reduced balanced protein diet on reward-based learning. Animal 13, 1260–1268 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Boogert, N. J., Zimmer, C. & Spencer, K. A. Pre- and post-natal stress have opposing effects on social information use. Biol. Lett. 9, 20121088 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Xia, S.-Z., Liu, L., Feng, C.-H. & Guo, A.-K. Nutritional effects on operant visual learning in Drosophila melanogaster. Physiol. Behav. 62, 263–271 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Eaton, L., Edmonds, E. J., Henry, T. B., Snellgrove, D. L. & Sloman, K. A. Mild maternal stress disrupts associative learning and increases aggression in offspring. Horm. Behav. 71, 10–15 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Costa, C. P. et al. Care-giver identity impacts offspring development and performance in an annually social bumble bee. BMC Ecol. Evol. 21, 20 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Roche, D. P., McGhee, K. E. & Bell, A. M. Maternal predator-exposure has lifelong consequences for offspring learning in three-spined sticklebacks. Biol. Lett. 8, 932–935 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Feng, S., McGhee, K. E. & Bell, A. M. Effect of maternal predator exposure on the ability of stickleback offspring to generalize a learned colour-reward association. Anim. Behav. 107, 61–69 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghio, S. C., Leblanc, A. B., Audet, C. & Aubin-Horth, N. Effects of maternal stress and cortisol exposure at the egg stage on learning, boldness and neophobia in brook trout. Behaviour 153, 1639–1663 (2016).

    Google Scholar 

  • Tariel, J., Plenet, S. & Luquet, E. How do developmental and parental exposures to predation affect personality and immediate behavioural plasticity in the snail Physa acuta? Proc. R. Soc. B 287, 20201761 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dinh, H. et al. Transgenerational effects of parental diet on offspring development and disease resistance in flies. Front. Ecol. Evol. 9, 606993 (2021).

    Google Scholar 

  • Bilkó, A., Altbäcker, V. & Hudson, R. Transmission of food preference in the rabbit: The means of information transfer. Physiol. Behav. 56, 907–912 (1994).

    PubMed 

    Google Scholar 

  • Oostindjer, M., Bolhuis, J. E., van den Brand, H., Roura, E. & Kemp, B. Prenatal flavor exposure affects growth, health and behavior of newly weaned piglets. Physiol. Behav. 99, 579–586 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Wells, D. L. & Hepper, P. G. Prenatal olfactory learning in the domestic dog. Anim. Behav. 72, 681–686 (2006).

    Google Scholar 

  • Hepper, P. G. Fetal memory: does it exist? What does it do? Acta Paediatr. 85, 16–20 (1996).

    Google Scholar 

  • Gowri, V., Dion, E., Viswanath, A., Monteiro Piel, F. & Monteiro, A. Transgenerational inheritance of learned preferences for novel host plant odors in Bicyclus anynana butterflies. Evolution 73, 2401–2414 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Peralta-Quesada, P. C. & Schausberger, P. Prenatal chemosensory learning by the predatory mite Neoseiulus californicus. PLoS ONE 7, e53229 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nieberding, C. M., van Dyck, H. & Chittka, L. Adaptive learning in non-social insects: from theory to field work, and back. Curr. Opin. Insect Sci. 27, 75–81 (2018).

    PubMed 

    Google Scholar 

  • Momen, F. M. & El Saway, S. A. Biology and fee18lopemenviour of the predatory mite Amblyseius swirskii (Acari: Phytoseiidae). Acarologia 33, 199–204 (1993).

    Google Scholar 

  • Wimmer, D., Hoffmann, D. & Schausberger, P. Prey suitability of Western flower thrips, Frankliniella occidentalis, and onion thrips, Thrips tabaci, for the predatory mite Amblyseius swirskii. Biocontrol Sci. Technol. 18, 533–542 (2008).

    Google Scholar 

  • Vangansbeke, D. et al. Supplemental food for Amblyseius swirskii in the control of thrips: feeding friend or foe? Pest Manag. Sci. 72, 466–473 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Delisle, J. F., Brodeur, J. & Shipp, L. Evaluation of various types of supplemental food for two species of predatory mites, Amblyseius swirskii and Neoseiulus cucumeris (Acari: Phytoseiidae). Exp. Appl. Acarol. 65, 483–494 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Christiansen, I. C., Szin, S. & Schausberger, P. Benefit-cost trade-offs of early learning in foraging predatory mites Amblyseius swirskii. Sci. Rep. 6, 23571 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schausberger, P., Davaasambuu, U., Saussure, S. & Christiansen, I. C. Categorizing experience-based foraging plasticity in mites: age dependency, primacy effects and memory persistence. R. Soc. Open Sci. 5, 172110 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Seiter, M. & Schausberger, P. Constitutive and operational variation of learning in foraging predatory mites. PLoS ONE 11, e0166334 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schausberger, P., Seiter, M. & Raspotnig, G. Innate and learned responses of foraging predatory mites to polar and non-polar fractions of thrips’ chemical cues. Biol. Control 151, 104371 (2020).

    CAS 

    Google Scholar 

  • Seiter, M. & Schausberger, P. Maternal intraguild predation risk affects offspring anti-predator behavior and learning in mites. Sci. Rep. 5, 15046 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Williams, Z. M. Transgenerational influence of sensorimotor training on offspring behavior and its neural basis in Drosophila. Neurobiol. Learn. Mem. 131, 166–175 (2016).

    PubMed 

    Google Scholar 

  • Jahanbazi, M., Sedaratian-Jahromi, A. & Ghane-Jahromi, M. Comparative study of predation, preference and switching behaviors of two predatory mite Neoseiulus californicus and Amblyseius swirskii (Acari: Phytoseiidae). Int. J. Pest Manag. https://doi.org/10.1080/09670874.2021.1944699 (2021).

  • Margulies, C., Tully, T. & Dubnau, J. Deconstructing memory in Drosophila. Curr. Biol. 15, R700–R713 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mery, F. & Kawecki, T. J. A cost of long-term memory in Drosophila. Science 308, 1148 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Schausberger, P., Walzer, A., Hoffmann, D. & Rahmani, H. Food imprinting revisited: early learning in foraging predatory mites. Behaviour 147, 883–897 (2010).

    Google Scholar 

  • Schausberger, P. & Peneder, S. Non-associative versus associative learning by foraging predatory mites. BMC Ecol. 17, 2 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Stephens, D. W. & Krebs, J. R. Foraging Theory. (Princeton University Press, 1986).

  • Mendel, D. & Schausberger, P. Diet-dependent intraguild predation between the predatory mites Neoseiulus californicus and Neoseiulus cucumeris. J. Appl. Entomol. 135, 311–319 (2011).

    Google Scholar 

  • Somer, R. A. & Thummel, C. S. Epigenetic inheritance of metabolic state. Curr. Opin. Genet. Dev. 27, 43–47 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Bonduriansky, R. & Crean, A. J. What are condition-transfer effects and how can they be detected? Methods Ecol. Evol. 9, 450–456 (2018).

    Google Scholar 

  • Engqvist, L. & Reinhold, K. Adaptive parental effects and how to estimate them: a comment to Bonduriansky and Crean. Methods Ecol. Evol. 9, 457–459 (2018).

    Google Scholar 

  • Melis, R. et al. Effect of freezing and drying processes on the molecular traits of edible yellow mealworm. Innov. Food Sci. Emerg. Technol. 48, 138–149 (2018).

    CAS 

    Google Scholar 

  • Singh, Y., Cullere, M., Kovitvadhi, A., Chundang, P. & Dalle Zotte, A. Effect of different killing methods on physicochemical traits, nutritional characteristics, in vitro human digestibility and oxidative stability during storage of the house cricket (Acheta domesticus L.). Innov. Food Sci. Emerg. Technol. 65, 102444 (2020).

    CAS 

    Google Scholar 

  • Grafen, A. On the uses of data on lifetime reproductive success. Philos. Trans. R. Soc. B 363, 1635–1645 (1988).

    Google Scholar 

  • Monaghan, P. Early growth conditions, phenotypic development and environmental change. Philos. Trans. R. Soc. B 363, 1635–1645 (2008).

    Google Scholar 

  • English, S., Fawcett, T. W., Higginson, A. D., Trimmer, P. C. & Uller, T. Adaptive use of information during growth can explain long-term effects of early life experiences. Am. Nat. 187, 620–632 (2016).

    PubMed 

    Google Scholar 

  • Miller, R. R. & Polack, C. W. Sources of maladaptive behavior in ‘normal’ organisms. Behav. Process. 154, 4–12 (2018).

    Google Scholar 

  • Schausberger, P. Inter-and intraspecific predation on immatures by adult females in Euseius finlandicus, Typhlodromus pyri and Kampimodromus aberrans (Acari, Phytoseiidae). Exp. Appl. Acarol. 21, 131–150 (1997).

    Google Scholar 

  • Walzer, A. & Schausberger, P. Non-consumptive effects of predatory mites on thrips and its host plant. Oikos 118, 934–940 (2009).

    Google Scholar 

  • Walzer, A., Paulus, H. & Schausberger, P. Ontogenetic shifts in intraguild predation on thrips by phytoseiid mites: the relevance of body size and diet specialization. Bull. Entomol. Res. 94, 577–588 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Vangansbeke, D., Duarte, M. V. A. & De Clercq, P. Cold-born killers: exploiting temperature-size rule enhances predation capacity of a predatory mite. Pest Manag. Sci. 76, 1841–1846 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Krantz, G. W. & Walter, D. E. A Manual of Acarology 3rd edn (Texas Tech University Press, 2008).

  • Croft, B. A., Luh, H.-K. & Schausberger, P. Larval size relative to larval feeding, cannibalism of larvae, egg or adult female size and larval–adult setal patterns among 13 phytoseiid mite species. Exp. Appl. Acarol. 23, 599–610 (1999).

    Google Scholar 


  • Source: Ecology - nature.com

    European-wide forest monitoring substantiate the neccessity for a joint conservation strategy to rescue European ash species (Fraxinus spp.)

    Finding her way to fusion