in

Transposable elements maintain genome-wide heterozygosity in inbred populations

  • Kristensen, T. N. et al. A test of quantitative genetic theory using Drosophila- effects of inbreeding and rate of inbreeding on heritabilities and variance components. J. Evol. Biol. 18, 763–770 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Angeloni, F., Ouborg, N. J. & Leimu, R. Meta-analysis on the association of population size and life history with inbreeding depression in plants. Biol. Conserv. 144, 35–43 (2011).

    Google Scholar 

  • Caballero, A., Bravo, I. & Wang, J. Inbreeding load and purging: implications for the short-term survival and the conservation management of small populations. Heredity 118, 177–185 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Park, D. S., Ellison, A. M. & Davis, C. C. Mating system does not predict niche breath. Glob. Ecol. Biogeogr. 27, 804–813 (2018).

    Google Scholar 

  • Buckley, J., Daly, R., Cobbold, C. A., Burgess, K. & Mable, B. K. Changing environments and genetic variation: natural variation in inbreeding does not compromise short-term physiological responses. Proc. R. Soc. B Biol. Sci. 286, 20192109 (2019).

    Google Scholar 

  • Grossenbacher, D., Briscoe Runquist, R., Goldberg, E. E. & Brandvain, Y. Geographic range size is predicted by plant mating system. Ecol. Lett. 18, 706–713 (2015).

    PubMed 

    Google Scholar 

  • Wright, S. I., Lauga, B. & Charlesworth, D. Rates and patterns of molecular evolution in inbred and outbred arabidopsis. Mol. Biol. Evol. 19, 1407–1420 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Atwell, S. et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465, 627–631 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Platt, A. et al. The scale of population structure in Arabidopsis thaliana. PLoS Genet. 6, e1000843 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lynch, M., Conery, J. & Burger, R. Mutation accumulation and the extinction of small populations. Am. Nat. 146, 489–518 (1995).

    Google Scholar 

  • Willis, J. H. The role of genes of large effect on inbreeding depression in Mimulus guttatus. Evolution 53, 1678–1691 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Coron, C., Méléard, S., Porcher, E. & Robert, A. Quantifying the mutational meltdown in diploid populations. Am. Nat. 181, 623–636 (2013).

    PubMed 

    Google Scholar 

  • Kyriazis, C. C., Wayne, R. K. & Lohmueller, K. E. Strongly deleterious mutations are a primary determinant of extinction risk due to inbreeding depression. Evol. Lett. https://doi.org/10.1002/evl3.209 (2020).

  • Barrett, S. C. H. & Charlesworth, D. Effects of a change in the level of inbreeding on the genetic load. Nature 352, 522–524 (1991).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hedrick, P. W. & Garcia-Dorado, A. Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol. Evol. 31, 940–952 (2016).

    PubMed 

    Google Scholar 

  • Robinson, J. A., Brown, C., Kim, B. Y., Lohmueller, K. E. & Wayne, R. K. Purging of strongly deleterious mutations explains long-term persistence and absence of inbreeding depression in island foxes. Curr. Biol. 28, 3487–3494.e4 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khan, A. et al. Genomic evidence for inbreeding depression and purging of deleterious genetic variation in Indian tigers. Proc. Natl. Acad. Sci. USA 118, e2023018118 (2021).

  • Byers, D. L. & Waller, D. M. Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Annu. Rev. Ecol. Syst. 30, 479–513 (1999).

    Google Scholar 

  • Goodwillie, C., Kalisz, S. & Eckert, C. G. The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 36, 47–79 (2005).

    Google Scholar 

  • Hill, W. G. & Robertson, A. The effect of linkage on limits to artificial selection. Genet. Res. 8, 269–294 (1966).

    CAS 
    PubMed 

    Google Scholar 

  • Covert, A. W. III, Lenski, R. E., Wilke, C. O. & Ofria, C. Experiments on the role of deleterious mutations as stepping stones in adaptive evolution. Proc. Natl Acad. Sci. USA 110, E3171–E3178 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Castellano, D., Coronado-Zamora, M., Campos, J. L., Barbadilla, A. & Eyre-Walker, A. Adaptive evolution is substantially impeded by hill–robertson interference in Drosophila. Mol. Biol. Evol. 33, 442–455 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Anderson, J. T., Lee, C.-R., Rushworth, C. A., Colautti, R. I. & Mitchell-Olds, T. Genetic trade-offs and conditional neutrality contribute to local adaptation. Mol. Ecol. 22, 699–708 (2013).

    PubMed 

    Google Scholar 

  • Hämälä, T. & Savolainen, O. Genomic patterns of local adaptation under gene flow in arabidopsis lyrata. Mol. Biol. Evol. 36, 2557–2571 (2019).

    Google Scholar 

  • Taylor, M. A. et al. Large-effect flowering time mutations reveal conditionally adaptive paths through fitness landscapes in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 116, 17890–17899 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Storz, J. F. Causes of molecular convergence and parallelism in protein evolution. Nat. Rev. Genet. 17, 239–250 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mimura, M. & Aitken, S. N. Local adaptation at the range peripheries of Sitka spruce. J. Evol. Biol. 23, 249–258 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Stanton-Geddes, J., Tiffin, P. & Shaw, R. G. Role of climate and competitors in limiting fitness across range edges of an annual plant. Ecology 93, 1604–1613 (2012).

    PubMed 

    Google Scholar 

  • Vergeer, P. & Kunin, W. E. Adaptation at range margins: common garden trials and the performance of Arabidopsis lyrata across its northwestern European range. N. Phytol. 197, 989–1001 (2013).

    Google Scholar 

  • Volis, S., Ormanbekova, D. & Shulgina, I. Role of selection and gene flow in population differentiation at the edge vs. interior of the species range differing in climatic conditions. Mol. Ecol. 25, 1449–1464 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Glémin, S., Bazin, E. & Charlesworth, D. Impact of mating systems on patterns of sequence polymorphism in flowering plants. Proc. R. Soc. B Biol. Sci. 273, 3011–3019 (2006).

    Google Scholar 

  • Almeida‐Rocha, J. M., Soares, L. A. S. S., Andrade, E. R., Gaiotto, F. A. & Cazetta, E. The impact of anthropogenic disturbances on the genetic diversity of terrestrial species: A global meta‐analysis. Mol. Ecol. 29, 4812–4822 (2020).

    PubMed 

    Google Scholar 

  • Schrader, L. et al. Transposable element islands facilitate adaptation to novel environments in an invasive species. Nat. Commun. 5, 5495 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lu, L. et al. Tracking the genome-wide outcomes of a transposable element burst over decades of amplification. Proc. Natl Acad. Sci. USA 114, E10550–E10559 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schrader, L. & Schmitz, J. The impact of transposable elements in adaptive evolution. Mol. Ecol. 28, 1537–1549 (2019).

    PubMed 

    Google Scholar 

  • Habig, M., Lorrain, C., Feurtey, A., Komluski, J. & Stukenbrock, E. H. Epigenetic modifications affect the rate of spontaneous mutations in a pathogenic fungus. Nat. Commun. 12, 1–13 (2021).

    Google Scholar 

  • Wicker, T. et al. DNA transposon activity is associated with increased mutation rates in genes of rice and other grasses. Nat. Commun. 7, 1–9 (2016).

    Google Scholar 

  • Dubin, M. J., Mittelsten Scheid, O. & Becker, C. Transposons: a blessing curse. Curr. Opin. Plant Biol. 42, 23–29 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Stapley, J., Santure, A. W. & Dennis, S. R. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol. Ecol. 24, 2241–2252 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Sultana, T., Zamborlini, A., Cristofari, G. & Lesage, P. Integration site selection by retroviruses and transposable elements in eukaryotes. Nat. Rev. Genet. 18, 292–308 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Baduel, P. et al. Genetic and environmental modulation of transposition shapes the evolutionary potential of Arabidopsis thaliana. Genome Biol. 22, 1–26 (2021).

    Google Scholar 

  • Quesneville, H. Twenty years of transposable element analysis in the Arabidopsis thaliana genome. Mob. DNA 11, 28 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ossowski, S. et al. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327, 92–94 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Coulondre, C., Miller, J. H., Farabaugh, P. J. & Gilbert, W. Molecular basis of base substitution hotspots in Escherichia coli. Nature 274, 775–780 (1978).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Duncan, B. K. & Miller, J. H. Mutagenic deamination of cytosine residues in DNA. Nature 287, 560–561 (1980).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Linquist, S. et al. Distinguishing ecological from evolutionary approaches to transposable elements. Biol. Rev. 88, 573–584 (2013).

    PubMed 

    Google Scholar 

  • Dupeyron, M., Singh, K. S., Bass, C. & Hayward, A. Evolution of Mutator transposable elements across eukaryotic diversity. Mob. DNA 10, 1–14 (2019).

    Google Scholar 

  • Batstone, R. T. Genomes within genomes: nested symbiosis and its implications for plant evolution. New Phytol. https://doi.org/10.1111/nph.17847 (2021).

  • Pietzenuk, B. et al. Recurrent evolution of heat-responsiveness in Brassicaceae COPIA elements. Genome Biol. 17, 209 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Horváth, V., Merenciano, M. & González, J. Revisiting the relationship between transposable elements and the eukaryotic stress response. Trends Genet. 33, 832–841 (2017).

    PubMed 

    Google Scholar 

  • Liu, S. et al. Role of H1 and DNA methylation in selective regulation of transposable elements during heat stress. N. Phytol. 229, 2238–2250 (2021).

    CAS 

    Google Scholar 

  • Mao, H. et al. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat. Commun. 6, 1–13 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Castelletti, S., Tuberosa, R., Pindo, M. & Salvi, S. A MITE transposon insertion is associated with differential methylation at the maize flowering time QTL vgt1. G3 Genes, Genomes, Genet. 4, 805–812 (2014).

    CAS 

    Google Scholar 

  • Legrand, S. et al. Differential retention of transposable element-derived sequences in outcrossing Arabidopsis genomes. Mob. DNA 10, 30 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Quadrana, L. et al. Transposition favors the generation of large effect mutations that may facilitate rapid adaption. Nat. Commun. 10, 1–10 (2019).

    CAS 

    Google Scholar 

  • Teschendorf, A. E. & Relton, C. L. Statistical and integrative system-level analysis of DNA methylation data. Nat. Rev. Genet. 19, 129–147 (2019).

    Google Scholar 

  • Bonchev, G. & Willi, Y. Accumulation of transposable elements in selfing populations of Arabidopsis lyrata supports the ectopic recombination model of transposon evolution. N. Phytol. 219, 767–778 (2018).

    CAS 

    Google Scholar 

  • Lockton, S., Ross-Ibarra, J. & Gaut, B. S. Demography and weak selection drive patterns of transposable element diversity in natural populations of Arabidopsis lyrata. Proc. Natl Acad. Sci. USA 105, 13965–13970 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lockton, S. & Gaut, B. S. The evolution of transposable elements in natural populations of self-fertilizing Arabidopsis thaliana and its outcrossing relative Arabidopsis lyrata. BMC Evol. Biol. 10, 10 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mable, B. K., Dart, A. V. R., Berardo, C., Di & Witham, L. Breakdown of self-incompatibility in the perennial Arabidopsis lyrata (Brassicaceae) and its genetic consequences. Evolution 59, 1437–1448 (2005).

    PubMed 

    Google Scholar 

  • Foxe, J. P. et al. Reconstructing origins of loss of self-incompatibility and selfing in North American Arabidopsis lyrata: a population genetic context. Evolution 64, 3495–3510 (2010).

    PubMed 

    Google Scholar 

  • Quadrana, L. et al. The Arabidopsis thaliana mobilome and its impact at the species level. Elife 5, e15716 (2016).

  • Stuart, T. et al. Population scale mapping of transposable element diversity reveals links to gene regulation and epigenomic variation. Elife 5, e20777 (2016).

  • Willi, Y. Mutational meltdown in selfing Arabidopsis lyrata. Evolution 67, 806–815 (2013).

    PubMed 

    Google Scholar 

  • Joschinski, J., van Kleunen, M. & Stift, M. Costs associated with the evolution of selfing in North American populations of Arabidopsis lyrata? Evol. Ecol. 29, 749–764 (2015).

    Google Scholar 

  • Koonin, E. V. & Krupovic, M. Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat. Rev. Genet. 16, 184–192 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Li, Z.-W. et al. Transposable elements contribute to the adaptation of Arabidopsis thaliana. Genome Biol. Evol. 10, 2140–2150 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Catlin, N. S. & Josephs, E. B. The important contribution of transposable elements to phenotypic variation and evolution. Curr. Opin. Plant Biol. 65, 102140 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Casacuberta, E. & González, J. The impact of transposable elements in environmental adaptation. Mol. Ecol. 22, 1503–1517 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Baduel, P., Quadrana, L., Hunter, B., Bomblies, K. & Colot, V. Relaxed purifying selection in autopolyploids drives transposable element over-accumulation which provides variants for local adaptation. Nat. Commun. 10, 1–10 (2019).

    Google Scholar 

  • Wos, G., Choudhury, R. R., Kolář, F. & Parisod, C. Transcriptional activity of transposable elements along an elevational gradient in Arabidopsis arenosa. Mob. DNA 12, 7 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stebbins, G. L. Self fertilization and population variability in the higher plants. Am. Nat. 91, 337–354 (1957).

    Google Scholar 

  • Takebayashi, N. & Morrell, P. L. Is self-fertilization an evolutionary dead end? Revisiting an old hypothesis with genetic theories and a macroevolutionary approach. Am. J. Bot. 88, 1143–1150 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Igic, B. & Busch, J. W. Is self‐fertilization an evolutionary dead end? N. Phytol. 198, 386–397 (2013).

    Google Scholar 

  • Goldberg, E. E. et al. Species selection maintains self-incompatibility. Science 330, 493–495 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Abu Awad, D. & Billiard, S. The double edged sword: The demographic consequences of the evolution of self-fertilization. Evolution 71, 1178–1190 (2017).

    PubMed 

    Google Scholar 

  • Fijarczyk, A. & Babik, W. Detecting balancing selection in genomes: limits and prospects. Mol. Ecol. 24, 3529–3545 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Wu, Q. et al. Long-term balancing selection contributes to adaptation in Arabidopsis and its relatives. Genome Biol. 18, 1–15 (2017).

    CAS 

    Google Scholar 

  • Kerwin, R. et al. Natural genetic variation in Arabidopsis thaliana defense metabolism genes modulates field fitness. Elife 2015, 1–28 (2015).

    Google Scholar 

  • Waller, D. M. Addressing Darwin’s dilemma: can pseudo-overdominance explain persistent inbreeding depression and load? Evolution 75, 779–793 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Gilbert, K. J., Pouyet, F., Excoffier, L. & Peischl, S. Transition from background selection to associative overdominance promotes diversity in regions of low recombination. Curr. Biol. 30, 101–107.e3 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Buckley, J. et al. R-gene variation across Arabidopsis lyrata subspecies: effects of population structure, selection and mating system. BMC Evol. Biol. 16, 93 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmickl, R., Jørgensen, M. H., Brysting, A. K. & Koch, M. A. Phylogeographic implications for the north american boreal-arctic Arabidopsis lyrata complex. Plant Ecol. Divers. 1, 245–254 (2008).

    Google Scholar 

  • Buckley, J., Holub, E. B., Koch, M. A., Vergeer, P. & Mable, B. K. Restriction associated DNA-genotyping at multiple spatial scales in Arabidopsis lyrata reveals signatures of pathogen-mediated selection. BMC Genomics 19, 1–21 (2018).

    Google Scholar 

  • Flutre, T., Duprat, E., Feuillet, C. & Quesneville, H. Considering transposable element diversification in de novo annotation approaches. PLoS ONE 6, e16526 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luu, K., Bazin, E. & Blum, M. G. B. pcadapt: an R package to perform genome scans for selection based on principal component analysis. in. Mol. Ecol. Resour. 17, 67–77 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Privé, F., Luu, K., Vilhjálmsson, B. J. & Blum, M. G. B. Performing highly efficient genome scans for local adaptation with R Package pcadapt Version 4. Mol. Biol. Evol. 37, 2153–2154 (2020).

    PubMed 

    Google Scholar 

  • Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180, 977–993 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Charlesworth, J. & Eyre-Walker, A. The McDonald-Kreitman test and slightly deleterious mutations. Mol. Biol. Evol. 25, 1007–1015 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Hernandez, R. D. et al. Ultrarare variants drive substantial cis heritability of human gene expression. Nat. Genet. 51, 1349–1355 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Williamson, R. J. et al. Evidence for widespread positive and negative selection in coding and conserved noncoding regions of capsella grandiflora. PLoS Genet. 10, e1004622 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R. J. 9, 378–400 (2017).

    Google Scholar 

  • Mattila, T. M., Tyrmi, J., Pyhäjärvi, T. & Savolainen, O. Genome-wide analysis of colonization history and concomitant selection in Arabidopsis lyrata. Mol. Biol. Evol. 34, 2665–2677 (2017).

    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Earth can regulate its own temperature over millennia, new study finds

    On batteries, teaching, and world peace