in

Tropical forests as drivers of lake carbon burial

  • Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brando, P. M. et al. Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philos. Trans. R. Soc. B Biol. Sci. 363, 1839–1848 (2008).

    Article 

    Google Scholar 

  • Nobre, C. A. et al. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl Acad. Sci. USA 113, 10759–10768 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Malhi, Y. & Grace, J. Tropical forests and atmospheric carbon dioxide. Trends Res. Ecol. Environ. 15, 332–337 (2000).

    CAS 
    Article 

    Google Scholar 

  • Mulholland, P. J. & Elwood, J. W. The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle. Tellus 34, 490–499 (1982).

    ADS 
    CAS 

    Google Scholar 

  • Dean, W. E. & Gorham, E. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26, 535–538 (1998).

    ADS 
    Article 

    Google Scholar 

  • Tranvik, L. J., Cole, J. J. & Prairie, Y. T. The study of carbon in inland waters-from isolated ecosystems to players in the global carbon cycle. Limnol. Oceanogr. Lett. 3, 41–48 (2018).

    Article 

    Google Scholar 

  • Mendonça, R. et al. Organic carbon burial in global lakes and reservoirs. Nat. Commun. 8, 1694 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Stallard, R. F. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Glob. Biogeochem. Cycles 12, 231–257 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Anderson, N. J., Heathcote, A. J. & Engstrom, D. R. Anthropogenic alteration of nutrient supply increases the global freshwater carbon sink. Sci. Adv. 6, eaaw2145 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Marotta, H., Pinho, L. & Gudasz, C. Greenhouse gas production in low-latitude lake sediments responds strongly to warming. Nat. Clim. Chang. 4, 11–14 (2014).

    Article 
    CAS 

    Google Scholar 

  • Cardoso, S. J. B., Enrich-Prast, A. C., Pace, M. L. & Rol, F. B. Do models of organic carbon mineralization extrapolate to warmer tropical sediments? Limnol. Oceanogr. 59, 48–54 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51, 933 (2001).

    Article 

    Google Scholar 

  • Tateishi, R. et al. Production of global land cover data – GLCNMO2008. J. Geogr. Geol. 6, (2014).

  • Hess, L. L. et al. Wetlands of the lowland Amazon basin: extent, vegetative cover, and dual-season inundated area as mapped with JERS-1 synthetic aperture radar. Wetlands 35, 745–756 (2015).

    Article 

    Google Scholar 

  • Clow, D. W. et al. Organic carbon burial in lakes and reservoirs of the conterminous United States. Environ. Sci. Technol. 49, 7614–7622 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lundin, E. J. et al. Large difference in carbon emission – burial balances between boreal and arctic lakes. Sci. Rep. 5, 14248 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Heathcote, A. J., Anderson, N. J., Prairie, Y. T., Engstrom, D. R. & del Giorgio, P. A. Large increases in carbon burial in northern lakes during the Anthropocene. Nat. Commun. 6, 10016 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Raymond, P. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Anderson, N. J., Dietz, R. D. & Engstrom, D. R. Land-use change, not climate, controls organic carbon burial in lakes. Proc. Biol. Sci. 280, 20131278 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanders, L. M. et al. Carbon accumulation in Amazonian floodplain lakes: a significant component of Amazon budgets? Limnol. Oceanogr. Lett. 2, 29–35 (2017).

    Article 

    Google Scholar 

  • Appleby, P. G. & Oldfield, F. In Uranium-series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences (eds. Ivanovich, M. & Harmon, R. S.) (Clarendon Press, 1992).

  • Engstrom, D. R., Fritz, S. C., Almendinger, J. E. & Juggins, S. Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature 408, 161–166 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kim, J.-H. et al. Tracing soil organic carbon in the lower Amazon River and its tributaries using GDGT distributions and bulk organic matter properties. Geochim. Cosmochim. Acta 90, 163–180 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Boye, K. et al. Thermodynamically controlled preservation of organic carbon in floodplains. Nat. Geosci. 10, 415–419 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Marotta, H., Paiva, L. T. & Petrucio, M. M. Changes in thermal and oxygen stratification pattern coupled to CO2 outgassing persistence in two oligotrophic shallow lakes of the Atlantic Tropical Forest, Southeast Brazil. Limnology 10, 195–202 (2009).

    CAS 
    Article 

    Google Scholar 

  • Anderson, N. J., Bennion, H. & Lotter, A. F. Lake eutrophication and its implications for organic carbon sequestration in Europe. Glob. Chang. Biol. 20, 2741–2751 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sanders, L. M. et al. Historic carbon burial spike in an Amazon floodplain lake linked to riparian deforestation near Santarém, Brazil. Biogeosciences 15, 447–455 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Chang. 9, 73–79 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Marotta, H., Duarte, C. M., Sobek, S. & Enrich-Prast, A. Large CO 2 disequilibria in tropical lakes. Glob. Biogeochem. Cycles 23, (2009).

  • Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M. & Hess, L. L. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416, 617–620 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dunne, T., Mertes, L. A. K. K., Meade, R. H., Richey, J. E. & Forsberg, B. R. Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil. Bull. Geol. Soc. Am. 110, 450–467 (1998).

    Article 

    Google Scholar 

  • McLeod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).

    Article 

    Google Scholar 

  • Abril, G. et al. Technical note: large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences 12, 67–78 (2015).

    ADS 
    Article 

    Google Scholar 

  • Verpoorter, C., Kutser, T., Seekell, D. A. & Tranvik, L. J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).

    ADS 
    Article 

    Google Scholar 

  • Gardner, T. A. et al. Prospects for tropical forest biodiversity in a human-modified world. Ecol. Lett. 12, 561–582 (2009).

  • Dietz, R. D., Engstrom, D. R. & Anderson, N. J. Patterns and drivers of change in organic carbon burial across a diverse landscape: insights from 116 Minnesota lakes. Glob. Biogeochem. Cycles 29, 708–727 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hobbs, W. O., Engstrom, D. R., Scottler, S. P., Zimmer, K. D. & Cotner, J. B. Estimating modern carbon burial rates in lakes using a single sediment sample. Limnol. Oceanogr. Methods 11, 316–326 (2013).

    CAS 
    Article 

    Google Scholar 

  • Appleby, P. G. & Oldfield, F. The calculation of Pb-210 dates assuming a constant rate of supply of unsupported Pb-210 to the sediment. Catena 5, 1–8 (1978).

    CAS 
    Article 

    Google Scholar 

  • Turner, L. J. & Delorme, L. D. Assessment of 210Pb data from Canadian lakes using the CIC and CRS models. Environ. Geol. 28, 78–87 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Breithaupt, J. L., Smoak, J. M., Smith, T. J. & Sanders, C. J. Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades. J. Geophys. Res. G Biogeosci. 119, 2032–2048 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sanders, C. J. et al. Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a highly impacted mangrove wetland. Geophys. Res. Lett. 41, 2475–2480 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Mitra, S., Wassmann, R. & Vlek, P. L. G. An appraisal of global wetland area and its organic carbon stock. Curr. Sci. 88, 25–35 (2005).

    CAS 

    Google Scholar 

  • Ravichandran, K. S. Thermal residual stresses in a functionally graded material system. Mater. Sci. Eng. A 201, 269–276 (1995).

    Article 

    Google Scholar 

  • Hedges, J. I. et al. Compositions and fluxes of particulate organic material in the Amazon River1. Limnol. Oceanogr. 31, 717–738 (1986).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Araujo-Lima, C. A. R. M., Forsberg, B. R., Victoria, R. & Martinelli, L. Energy sources for detritivorous fishes in the Amazon. Science 234, 1256–1258 (1986).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Martinelli, L. A., Victoria, R. L. & Forsberg, B. R. Isotopic composition of majors carbon reservoirs in the Amazon floodplain. Int. J. Ecol. Environ. Sci. 20, 31–46 (1994).

    Google Scholar 

  • Martinelli, L. A. et al. Inland variability of carbon-nitrogen concentrations and δ13C in Amazon floodplain (várzea) vegetation and sediment. Hydrol. Process. 17, 1419–1430 (2003).

    ADS 
    Article 

    Google Scholar 

  • Zar, J. H. Biostatistical Analysis, Books a la Carte Edition (Pearson, 2010).


  • Source: Ecology - nature.com

    MIT engineers design surfaces that make water boil more efficiently

    Comparative efficacy of phosphorous supplements with phosphate solubilizing bacteria for optimizing wheat yield in calcareous soils