Dale, V. H. et al. Climate change and forest disturbances. BioScience 51, 723 (2001).
Google Scholar
McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 219, 851–869 (2018).
Google Scholar
Esquivel-Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).
Google Scholar
McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).
Google Scholar
Gora, E. M. & Esquivel-Muelbert, A. Implications of size-dependent tree mortality for tropical forest carbon dynamics. Nat. Plants 7, 384–391 (2021).
Google Scholar
Yanoviak, S. P. et al. Lightning is a major cause of large tree mortality in a lowland neotropical forest. New Phytol. 225, 1936–1944 (2020).
Google Scholar
Gora, E. M. et al. A mechanistic and empirically supported lightning risk model for forest trees. J. Ecol. 108, 1956–1966 (2020).
Google Scholar
Gora, E. M., Burchfield, J. C., Muller‐Landau, H. C., Bitzer, P. M. & Yanoviak, S. P. Pantropical geography of lightning‐caused disturbance and its implications for tropical forests. Glob. Change Biol. 26, 5017–5026 (2020).
Google Scholar
Harel, M. & Price, C. Thunderstorm trends over Africa. J. Clim. 33, 2741–2755 (2020).
Google Scholar
Maxwell, H. Observations on trees, as conductors of lightning. Mem. Am. Acad. Arts Sci. 2, 143 (1793).
Covert, R. N. Why an oak is often struck by lightning: a method of protecting trees against lightning. Mon. Weather Rev. 52, 492–493 (1924).
Google Scholar
Taylor, A. R. Lightning damage to forest trees in Montana. Weatherwise 17, 61–65 (1964).
Google Scholar
Furtado, C. X. Lightning injuries to trees. J. Malays. Branch R. Asiat. Soc. 13, 157–162 (1935).
Magnusson, W. E., Lima, A. P. & De Lima, O. Group lightning mortality of trees in a neotropical forest. J. Trop. Ecol. 12, 899–903 (1996).
Google Scholar
Yanoviak, S. P., Gora, E. M., Burchfield, J. M., Bitzer, P. M. & Detto, M. Quantification and identification of lightning damage in tropical forests. Ecol. Evol. 7, 5111–5122 (2017).
Google Scholar
Makela, J., Karvinen, E., Porjo, N., Makela, A. & Tuomi, T. Attachment of natural lightning flashes to trees: preliminary statistical characteristics. J. Light. Res. 1, 9–21 (2009).
Google Scholar
Yanoviak, S. P. in Treetops at Risk (eds Lowman, M. et al.) 147–153 (Springer, 2013).
Gora, E. M., Bitzer, P. M., Burchfield, J. C., Schnitzer, S. A. & Yanoviak, S. P. Effects of lightning on trees: a predictive model based on in situ electrical resistivity. Ecol. Evol. 7, 8523–8534 (2017).
Google Scholar
Orville, R. E. Photograph of a close lightning flash. Science 162, 666–667 (1968).
Google Scholar
Gora, E. M. & Yanoviak, S. P. Electrical properties of temperate forest trees: a review and quantitative comparison with vines. Can. J. For. Res. 45, 236–245 (2015).
Google Scholar
Hietz, P., Rosner, S., Hietz-Seifert, U. & Wright, S. J. Wood traits related to size and life history of trees in a Panamanian rainforest. New Phytol. 213, 170–180 (2017).
Google Scholar
Clarke, P. J. et al. Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. New Phytol. 197, 19–35 (2013).
Google Scholar
Kozlowski, T. T. & Pallardy, S. G. Physiology of Woody Plants (Academic Press, 1997).
Bruijning, M. et al. Surviving in a cosexual world: a cost–benefit analysis of dioecy in tropical trees. Am. Nat. 189, 297–314 (2017).
Google Scholar
Visser, M. D. et al. Strict mast fruiting for a tropical dipterocarp tree: a demographic cost–benefit analysis of delayed reproduction and seed predation. J. Ecol. 99, 1033–1044 (2011).
Google Scholar
Charles, A. E. Coconut lightning strike. Papua New Guin. Agric. J. 12, 192–195 (1960).
Sharples, A. Lightning storms and their significance in relation to diseases of Cocos nucifera and Hevea brasilensis. Ann. Appl. Biol. 20, 1–22 (1933).
Google Scholar
Wright, S. J. et al. Functional traits and the growth–mortality trade‐off in tropical trees. Ecology 91, 3664–3674 (2010).
Google Scholar
Camac, J. S. et al. Partitioning mortality into growth-dependent and growth-independent hazards across 203 tropical tree species. Proc. Natl Acad. Sci. USA 115, 12459–12464 (2018).
Google Scholar
Poorter, L. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytol. 181, 890–900 (2009).
Google Scholar
Gora, E. M., Bitzer, P. M., Burchfield, J. C., Gutiérrez, C. & Yanoviak, S. P. The contributions of lightning to biomass turnover, gap formation, and plant mortality in a tropical forest. Ecology 102, e03541 (2021).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).
Brooks, M. E. et al. glmmTMB: Generalized linear mixed models using template model builder. R package version 1.1.3 (2019).
Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).
Condit, R. et al. Complete data from the Barro Colorado 50-ha plot: 423617 trees, 35 years, 2019 version. Dryad https://doi.org/10.15146/5xcp-0d46 (2019).
Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).
Google Scholar
Zanne, A. E. et al. Data from: Towards a worldwide wood economics spectrum. Dryad https://doi.org/10.5061/dryad.234 (2009).
Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 70 (2020).
Google Scholar
Gora, E. M. et al. Data from: A mechanistic and empirically-supported lightning risk model for forest trees. Dryad https://doi.org/10.5061/dryad.c59zw3r48 (2020).
Source: Ecology - nature.com