in

Tube length of chironomid larvae as an indicator for dissolved oxygen in water bodies

[adace-ad id="91168"]

Chironomids have the ability to survive and reproduce in polluted environments, and thus they are included in many ecological studies where approaches may be taxonomic or functional16. The diversity of most macroinvertebrates is controlled by the oxygen level of water, but chironomids may survive in hypoxic conditions where the oxygen concentration may be less than 3 mg l−117. The current study demonstrates that changing seasons, as well as anthropogenic activities, have a significant impact on the levels of DO in aquatic bodies. As observed from the result, DO highly influences the tube length of the chironomid larvae. Since KWC is a wastewater canal, the average oxygen level is lower (5.24 ± 1.14 mg l−1) than KFP (6.63 ± 1.28 mg l−1) which is a normal fish culturing pond. It has also been observed that the average tube length of the chironomid larvae of KWC (8.66 ± 0.88 mm) is higher than KFP (7.68 ± 0.62 mm), which indicates that a low concentration of DO promotes the building of longer tubes in natural conditions. Similar observations were also observed in laboratory conditions. When the oxygen level (7.03 ± 0.41 mg l−1) in the experiment was kept in the normal range, there was negligible variation in tube length (7.61 ± 0.31 mm). But when the concentration of oxygen is gradually reduced by dilution, the tube length starts to increase accordingly, which is explained graphically in Fig. 4. The regression model of both the experimental conditions also supports the hypothesis that the tube length has an inverse relationship with DO. The scatter plot and simple linear regression confirmed the inverse relationship between DO and tube length (Figs. 1 and 2).

Chironomid larvae are able to grow in the polluted water of a wastewater pond as dominant macroinvertebrates18. It is observed that those larvae living in the sand tubes are more susceptible to chemical pollutants than the larvae living in silt tubes7. Sand particles are bigger than silt and are not suitable for the survival of larvae19. Chironomus riparius larvae make their tubes from different external particles and their own proteins20. Midge larvae are the inhabitants of sediments, and at the same time, sediment is the depository of different inorganic, organic, and heavy metals. In such cases, the tube of chironomid larvae may act as a defensive structure, which protects them from the adverse effects of undesirable pollutants and may increase their tolerance against such chemicals21,22,23.

Larvae can thrive in benthic sediments with high decaying organic content and very low DO concentrations in water bodies24. In poor DO concentration, larvae can survive due to the presence of haemoglobin in their body tissue fluid, which plays an important physiological role in increasing respiratory efficiency, as was observed in Chironomus plumosus. Longer tube length may help larvae generate better respiratory currents so that they can cope with a low DO environment.

Tube length is crucial for living in water because primarily tubes protect them from outer environmental factors like predators, and pollution. It was observed during this study that when the DO of water is low, larvae make elongated tubes to reach the upper layer of water, where the DO level is comparatively high. To get their required amount of oxygen, the larvae increase the tube length towards the water surface and increase the DO in tube water by undulating the body and other structures, creating a current inside the tube25,26. On contrary, when the DO level of the surrounding water of chironomid is sufficient, they can manage their normal physiological activities with the available oxygen. They need not to elongate their tube length. That’s why their tube length is inversely related to the DO of their surrounding medium.

If tube length does not increase in size in hypoxic water, larvae will not be able to meet their oxygen demand. If the DO of water decreases, tube length will increase and vice versa. Behavioural and physiological adaptations of chironomids larvae make them successful to live in a hypoxic environment. Thus, in hypoxic conditions, larvae with longer tubes are able to gather more oxygen from the upper layer of water and get more space to create a current of water to increase the amount of O2 inside the tube by undulating the preanal papillae, anal gill, ventral gills. This would explain why the tube length of chironomids depends on the DO of water. Hence by measuring the tube length with a standard measuring scale, one may get an idea about the quality of water, especially DO, before doing any chemical analysis. The work seems to be unique and novel for its own kind.


Source: Ecology - nature.com

Engineers solve a mystery on the path to smaller, lighter batteries

MesopTroph, a database of trophic parameters to study interactions in mesopelagic food webs