in

Understanding calcium functionality by examining growth characteristics and structural aspects in calcium-deficient grapevine

  • de Bang, T. C., Husted, S., Laursen, K. H., Persson, D. P. & Schjoerring, J. K. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol. 229, 2446–2469 (2021).

    PubMed 

    Google Scholar 

  • White, P. J. & Brown, P. H. Plant nutrition for sustainable development and global health. Ann. Bot. 105, 1073–1080 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hirschi, K. D. The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol. 136, 2438–2444 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hepler, P. K. Calcium: A central regulator of plant growth and development. Plant Cell 17, 2142–2155 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marschner, H. Mineral Nutrition of Higher Plants (Academic Press, 2011).

    Google Scholar 

  • Jones, R. J. W. & Lunt, O. R. The function of calcium in plants. Bot. Rev. 33, 407–426 (1967).

    CAS 

    Google Scholar 

  • White, P. J. & Broadley, M. R. Calcium in plants. Ann. Bot. 92, 487–511 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spehar, C. R. & Galwey, N. W. Screening soya beans [Glycine max (L.) Merill] for calcium efficiency by root growth in low-Ca nutrient solution. Euphytica 94, 113–117 (1997).

    Google Scholar 

  • Schulte-Baukloh, C. & Fromm, J. The effect of calcium starvation on assimilate partitioning and mineral distribution of the phloem. J. Exp. Bot. 44, 1703–1707 (1993).

    CAS 

    Google Scholar 

  • Duan, S. et al. Differential regulation of enzyme activities and physio-anatomical aspects of calcium nutrition in grapevine. Sci. Hortic. 272, 109423 (2020).

    CAS 

    Google Scholar 

  • Bondada, B. & Syvertsen, J. P. Leaf chlorophyll, net gas exchange, and chloroplast ultrastructure in citrus leaves of different nitrogen status. Tree Physiol. 23, 553–559 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Wind, C., Arend, M. & Fromm, J. Potassium-dependent cambial growth in poplar. Plant Biol. 6, 30–37 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Kirkby, E. A. & Pilbeam, D. J. Calcium as a plant nutrient. Plant Cell Environ. 7, 397–405 (1984).

    CAS 

    Google Scholar 

  • Song, W.-P., Chen, W., Yi, J.-W., Wang, H.-C. & Huang, X.-M. Ca distribution pattern in Litchi fruit and pedicel and impact of Ca channel inhibitor, La3+. Front. Plant Sci. 8, 2228. https://doi.org/10.3389/fpls.2017.02228 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Conn, S. & Gilliham, M. Comparative physiology of elemental distributions in plants. Ann. Bot. 105, 1081–1102 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Broadley, M. R. et al. Variation in the shoot calcium content of angiosperms. J. Exp. Bot. 54, 1431–1446 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Shikanai, Y. et al. Arabidopsis thaliana PRL1 is involved in low-calcium tolerance. Soil Sci. Plant Nutr. 61, 951–956 (2015).

    CAS 

    Google Scholar 

  • Burstrom, H. G. Calcium and plant growth. Biol. Rev. 43, 287–316 (1968).

    CAS 

    Google Scholar 

  • Hecht-Buchholz, Ch. Calcium deficiency and plant ultrastructure. Commun. Soil Sci. Plant Anal. 10, 67–81 (1979).

    CAS 

    Google Scholar 

  • Fink, S. D. The micromorphological distribution of bound calcium in needles of Norway spruce [Picea abies (L.) Karst.]. New Phytol. 119, 33–40 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • Skok, J. Effect of the form of the available nitrogen on the calcium deficiency symptoms in the bean plant. Plant Physiol. 16, 145–157 (1941).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Aguiar Santiago, F. L., Santiago, F. E. M., Filho, J. F. L. & Ratke, R. F. Plant growth and symptomatology of macronutrient deficiencies in cowpea plants. Comun. Sci. 9, 503–508 (2018).

    Google Scholar 

  • Gao, H., Wu, X., Zorrilla, C., Vega, S. E. & Palta, J. P. Fractionating of calcium in tuber and leaf tissues explains the calcium deficiency symptoms in potato plant overexpressing CAX1. Front. Plant Sci. 10, 1793. https://doi.org/10.3389/fpls.2019.01793 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chapman, H. D. Calcium. In Diagnostic Criteria for Plants and Soil (ed. Chapman, H. D.) 65–93 (University of California Press, 1966).

    Google Scholar 

  • Bondada, B., Harbertson, E., Shrestha, P. M. & Keller, M. Temporal extension of ripening beyond its physiological limits imposes physical and osmotic challenges perturbing metabolism in grape (Vitis vinifera L.) berries. Sci. Hortic. 219, 135–143 (2017).

    CAS 

    Google Scholar 

  • Robertson, D. Modulating plant calcium for better nutrition and stress tolerance. ISRN Bot. 2013, 952043 (2013).

    Google Scholar 

  • Martins, T. V., Evans, M. J., Woolfenden, H. C. & Morris, R. J. Towards the physics of calcium signaling in plants. Plants 2, 541–588 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Gupta, B. L. & Hall, T. A. Electron probe X-ray analysis of calcium. Ann. N.Y. Acad. Sci. 307, 28–51 (1978).

    CAS 
    ADS 

    Google Scholar 

  • Ramalho, J. C., Rebelo, M. C., Santos, M. E., Antunes, M. L. & Nunes, M. A. Effects of calcium deficiency on Coffea arabica. Nutrient changes and correlation of calcium levels with some photosynthetic parameters. Plant Soil 172, 87–96 (1995).

    Google Scholar 

  • Liu, Y., Riaz, M., Yan, L., Zeng, Y. & Cuncang, J. Boron and calcium deficiency disturbing the growth of trifoliate rootstock seedlings (Poncirus trifoliate L.) by changing root architecture and cell wall. Plant Physiol. Biochem. 144, 345–354 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Bondada, B., Oosterhuis, D. M., Wullschleger, S. D., Kim, K. S. & Harris, W. H. Anatomical considerations related to photosynthesis in cotton (Gossypium hirsutum L.) leaves, bracts, and the capsule wall. J. Exp. Bot. 270, 111–118 (1994).

    Google Scholar 

  • Bondada, B. & Syvertsen, J. P. Concurrent changes in net CO2 assimilation and chloroplast ultrastructure in nitrogen deficient citrus leaves. Environ. Exp. Bot. 54, 41–48 (2005).

    CAS 

    Google Scholar 

  • Atkinson, C. J., Mansfield, T. A., Kean, A. M. & Davies, W. J. Control of stomatal aperture by calcium in isolated epidermal tissue and whole leaves of Commelina communis L. New Phytol. 111, 9–17 (1989).

    CAS 

    Google Scholar 

  • Martinez, H. E. P. et al. Leaf and stem anatomy of cherry tomato under calcium and magnesium deficiencies. Braz. Arch. Biol. Technol. 63, e20180670 (2020).

    CAS 

    Google Scholar 

  • Bondada, B. Anomalies in structure, growth characteristics, and nutritional composition as induced by 2, 4-D drift phytotoxicity in grapevine (Vitis vinifera L.) leaves and clusters. J. Am. Soc. Hortic. Sci. 136, 165–176 (2011).

    CAS 

    Google Scholar 

  • Bondada, B. Micromorpho-anatomical examination of 2, 4-D phytotoxicity in grapevine (Vitis vinifera L.) leaves. J. Plant Growth Regul. 30, 185–198 (2011).

    CAS 

    Google Scholar 

  • Finger, A. T., de Bastos, A. A., Ferrarese-Filho, O. & Lucio, F. M. L. Role of calcium on phenolic compounds and enzymes related to lignification in soybean (Glycine max L.) root growth. Plant Growth Regul. 49, 69–76 (2006).

    Google Scholar 

  • Davis, D. E. Some effects of calcium deficiency on the anatomy of Pinus taeda. Am. J. Bot. 36, 276–282 (1949).

    CAS 

    Google Scholar 

  • Nightingale, G. T., Addoms, R. M., Robbins, W. R. & Schemerhorn, L. G. Effect of calcium deficiency on nitrate absorption and on metabolism in tomato. Plant Physiol. 6, 605–630 (1931).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Day, D. Some chemical aspects of calcium deficiency effects on Pisum sativum. Plant Physiol. 10, 811–816 (1935).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lautner, S. & Fromm, J. Calcium-dependent physiological processes in trees. Plant Biol. 12, 268–274 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Fromm, J. Wood formation in trees in relation to calcium and potassium nutrition. Tree Physiol. 30, 1140–1147 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Bondada, B. Technical Advance: Novel, simple, fast, and safe approaches to visualizing fine cellular structures in free-hand sections of stem, leaf, and fruit using optical microscopy. Curr. Bot. 3, 11–22 (2012).

    Google Scholar 

  • Venning, F. D. The influence of major mineral nutrient deficiencies on growth and tissue differentiation in the hypocotyl of marglobe tomato. Phytomorphology 3, 315–326 (1953).

    CAS 

    Google Scholar 

  • Garrison, R. The growth and development of internodes in Helianthus. Bot. Gaz. 134, 246–255 (1973).

    Google Scholar 

  • Sai, J. & Johnson, C. H. Dark-stimulated calcium ion fluxes in the chloroplast stroma and cytosol. Plant Cell 14, 1279–1291 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Dingenen, J., Blomme, J., Gonzalez, N. & Inzé, D. Plants grow with a little help from their organelle friends. J. Exp. Bot. 67, 6267–6281 (2016).

    PubMed 

    Google Scholar 

  • Bondada, B. & Oosterhuis, D. M. Morphometric analysis of chloroplasts of cotton leaf and fruiting organs. Biol. Plant. 47, 281–284 (2003).

    Google Scholar 

  • Hall, J. D., Barr, R., Al-Abbas, A. H. & Crane, F. L. The Ultrastructure of chloroplasts in mineral-deficient maize leaves. Plant Physiol. 50, 404–409 (1972).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Larcher, W., Lütz, C., Nagele, M. & Bodner, M. Photosynthetic functioning and ultrastructure of chloroplasts in stem tissue of Fagus sylvatica. J. Plant Physiol. 132, 731–737 (1988).

    CAS 

    Google Scholar 

  • Pfanz, H., Aschan, G., Langenfeld-Heyser, R., Wittmann, C. & Loose, M. Ecology and ecophysiology of tree stems: Corticular and wood photosynthesis. Naturwissenschaften 89, 147–162 (2002).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Day, D. Some effects of calcium deficiency on Pisum sativum. Plant Physiol. 4, 493–506 (1929).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rangnekar, P. Effect of calcium deficiency in the carbon metabolisms in photosynthesis and respiration in tomato leaf. Plant Soil 42, 565–583 (1975).

    CAS 

    Google Scholar 

  • Rorison, I. H. & Robinson, D. Calcium as an environmental variable. Plant Cell Environ. 7, 381–390 (1984).

    CAS 

    Google Scholar 

  • Epstein, E. Mineral Nutrition of Plants. Principles and Perspectives (Wiley, 1972).

    Google Scholar 

  • Adhikari, T., Sarkar, D., Mashayekhi, H. & Xing, B. Growth and enzymatic activity of maize (Zea mays L.) plant: Solution culture test for copper dioxide nano particles. J. Plant Nutr. 39, 99–115 (2016).

    CAS 

    Google Scholar 

  • Wu, X. et al. Boron deficiency in trifoliate orange induces changes in pectin composition and architecture of components in root cell walls. Front. Plant Sci. 8, 1882. https://doi.org/10.3389/fpls.2017.01882 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lloret, P. G. & Casero, P. J. Lateral root initiation. In Plant Roots: The Hidden Half (eds Waisel, Y. et al.) 198–241 (Marcel Dekker Inc, 2002).

    Google Scholar 

  • Lynch, J. P. & Brown, K. M. Topsoil foraging: An architectural adaptation of plants to low phosphorus availability. Plant Soil 237, 225–237 (2001).

    CAS 

    Google Scholar 

  • Mazen, A. M. A., Zhang, D. & Franceschi, V. R. Calcium oxalate formation in Lemna minor L.: Physiological and ultrastructural aspects of high capacity calcium sequestration. New Phytol. 161, 435–448 (2003).

    Google Scholar 

  • Xie, Z. S., Forney, C. F., Xu, W. P. & Wang, S. P. Effects of root restriction on ultrastructural variation of phloem and phloem parenchyma cells in grape berry. Hortic. Sci. 44, 1334–1339 (2009).

    Google Scholar 

  • Franceschi, V. R. Calcium oxalate formation is a rapid and reversible process in Lemna minor L. Protoplasma 148, 130–139 (1989).

    Google Scholar 

  • Volk, G. M., Lynch-Holm, V. J., Kostman, T. A., Goss, L. J. & Francesch, V. R. The Role of druse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes leaves. Plant Biol. 4, 34–45 (2002).

    CAS 

    Google Scholar 

  • Cherel, I., Lefoulon, C., Boeglin, M. & Sentenac, H. Molecular mechanisms involved in plant adaptation to low K(+) availability. J. Exp. Bot. 65, 833–848 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Poni, S. & Intrieri, C. Grapevine photosynthesis: effects linked to light radiation and leaf age. Adv. Hortic. Sci. 15, 5–15 (2001).

    Google Scholar 

  • Zhu, L., Wang, S., Yang, T., Zhang, C. & Xu, W. Vine growth and nitrogen metabolism of ‘Fujiminori’ grapevines in response to root restriction. Sci. Hortic. 107, 143–149 (2006).

    Google Scholar 

  • Schichnes, D., Nemson, J., Sohlberg, L. & Ruzin, S. E. Microwave protocols for paraffin microtechnique and in situ localization in plants. Microsc. Microanal. 4, 491–496 (1998).

    CAS 
    PubMed 
    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Tuning in to invisible waves on the JET tokamak

    Using artificial intelligence to find anomalies hiding in massive datasets