in

Unravelling the interplay of ecological processes structuring the bacterial rare biosphere

  • Pedros-Alio C. The rare bacterial biosphere. Ann Rev Mar Sci. 2012;4:449–66. https://doi.org/10.1146/annurev-marine-120710-100948.

    Article 
    PubMed 

    Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci. 2006;103:12115–20. https://doi.org/10.1073/pnas.0605127103.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hausmann B, Pelikan C, Rattei T, Loy A, Pester M. Long-term transcriptional activity at zero growth of a cosmopolitan rare biosphere member. mBio. 2019;10:e02189–18. https://doi.org/10.1128/mBio.02189-18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pester M, Bittner N, Deevong P, Wagner M, Loy AA. ‘Rare biosphere’microorganism contributes to sulfate reduction in a peatland. ISME J. 2010;4:1591–602.

    Article 

    Google Scholar 

  • Rivett DW, Bell T. Abundance determines the functional role of bacterial phylotypes in complex communities. Nat Microbiol. 2018;3:767–72. https://doi.org/10.1038/s41564-018-0180-0.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Elsas JD, Chiurazzi M, Mallon CA, Elhottova D, Kristufek V, Salles JF. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci USA. 2012;109:1159–64. https://doi.org/10.1073/pnas.1109326109.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Magurran AE, Henderson PA. Explaining the excess of rare species in natural species abundance distributions. Nature. 2003;422:714–6.

    Article 

    Google Scholar 

  • Rabinowitz D, Rapp JK, Dixon PM. Competitive abilities of sparse grass species: means of persistence or cause of abundance. Ecology. 1984;65:1144–54. https://doi.org/10.2307/1938322.

    Article 

    Google Scholar 

  • Reinhardt K, Köhler G, Maas S, Detzel P. Low dispersal ability and habitat specificity promote extinctions in rare but not in widespread species: the Orthoptera of Germany. Ecography. 2005;28:593–602. https://doi.org/10.1111/j.2005.0906-7590.04285.x.

    Article 

    Google Scholar 

  • Yenni G, Adler PB, Ernest S. Strong self-limitation promotes the persistence of rare species. Ecology. 2012;93:456–61.

    Article 

    Google Scholar 

  • Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, et al. Where less may be more: how the rare biosphere pulls ecosystems strings. The ISME J. 2017;11:853–62. https://doi.org/10.1038/ismej.2016.174.

    Article 
    PubMed 

    Google Scholar 

  • Thingstad TF. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr. 2000;45:1320–8. https://doi.org/10.4319/lo.2000.45.6.1320.

    Article 

    Google Scholar 

  • Szekely AJ, Langenheder S. The importance of species sorting differs between habitat generalists and specialists in bacterial communities. FEMS Microbiol Ecol. 2014;87:102–12. https://doi.org/10.1111/1574-6941.12195.

    Article 
    PubMed 

    Google Scholar 

  • Mo Y, Zhang W, Yang J, Lin Y, Yu Z, Lin S. Biogeographic patterns of abundant and rare bacterioplankton in three subtropical bays resulting from selective and neutral processes. ISME J. 2018;12:2198–210. https://doi.org/10.1038/s41396-018-0153-6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biology Rev. 2013;77:342–56. https://doi.org/10.1128/MMBR.00051-12.

    Article 

    Google Scholar 

  • Vellend M. Conceptual synthesis in community ecology. Q Rev Biol. 2010;85:183–206. https://doi.org/10.1086/652373.

    Article 
    PubMed 

    Google Scholar 

  • Vellend M The Theory of Ecological Communities. Princeton University Pres. 2016:61-7.

  • Jia X, Dini-Andreote F, Falcao Salles J. Community assembly processes of the microbial rare biosphere. Trends Microbiol. 2018;26:738–47. https://doi.org/10.1016/j.tim.2018.02.011.

    Article 
    PubMed 

    Google Scholar 

  • Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013;7:2069–79. https://doi.org/10.1038/ismej.2013.93.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stegen JC, Lin X, Fredrickson JK, Konopka AE. Estimating and mapping ecological processes influencing microbial community assembly. Front Microbiol. 2015;6:https://doi.org/10.3389/fmicb.2015.00370.

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. Phylogenies and community ecology. Ann Rev Ecol Syst. 2002;33:475–505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448.

    Article 

    Google Scholar 

  • Lynch MDJ, Neufeld JD. Ecology and exploration of the rare biosphere. Nat Rev Micro. 2015;13:217–29. https://doi.org/10.1038/nrmicro3400.

    Article 

    Google Scholar 

  • Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc Natl Acad Sci USA. 2015;112:E1326–E32. https://doi.org/10.1073/pnas.1414261112.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chase JM, Kraft NJB, Smith KG, Vellend M, Inouye BD. Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere. 2011;2:art24 https://doi.org/10.1890/es10-00117.1.

    Article 

    Google Scholar 

  • Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio. 2014;5:e01371–14. https://doi.org/10.1128/mBio.01371-14.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Strous M, Heijnen JJ, Kuenen JG, Jetten MSM. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biotechnol. 1998;50:589–96. https://doi.org/10.1007/s002530051340.

    Article 

    Google Scholar 

  • Goldfarb KC, Karaoz U, Hanson CA, Santee CA, Bradford MA, Treseder KK, et al. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front Microbiol. 2011;2:94. https://doi.org/10.3389/fmicb.2011.00094.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jia X, Dini-Andreote F, Falcao Salles J. Comparing the influence of assembly processes governing bacterial community succession based on DNA and RNA Data. Microorganisms. 2020;8. https://doi.org/10.3390/microorganisms8060798.

  • Olff H, De Leeuw J, Bakker JP, Platerink RJ, van Wijnen HJ. Vegetation succession and herbivory in a salt marsh: changes induced by sea level rise and silt deposition along an elevational gradient. J Ecol. 1997;85:799–814. https://doi.org/10.2307/2960603.

    Article 

    Google Scholar 

  • Dini-Andreote F, Silva M, Triado-Margarit X, Casamayor EO, van Elsas JD, Salles JF. Dynamics of bacterial community succession in a salt marsh chronosequence: evidences for temporal niche partitioning. ISME J. 2014;8:1989–2001. https://doi.org/10.1038/ismej.2014.54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dini-Andreote F, Pylro VS, Baldrian P, van Elsas JD, Salles JF. Ecological succession reveals potential signatures of marine–terrestrial transition in salt marsh fungal communities. ISME J. 2016;10:1984–97.

    Article 

    Google Scholar 

  • Schrama M, Berg MP, Olff H. Ecosystem assembly rules: the interplay of green and brown webs during salt marsh succession. Ecology. 2012;93:2353–64.

    Article 

    Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci. 2011;108:4516–22. https://doi.org/10.1073/pnas.1000080107.

    Article 
    PubMed 

    Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.

    Article 

    Google Scholar 

  • Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol. 2016;2:16242. https://doi.org/10.1038/nmicrobiol.2016.242.

    Article 
    PubMed 

    Google Scholar 

  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet C, Al-Ghalith GA, et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Preprints. 2018;6:e27295v2. https://doi.org/10.7287/peerj.preprints.27295v2.

    Article 

    Google Scholar 

  • Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43. https://doi.org/10.1038/ismej.2017.119.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:D643–8. https://doi.org/10.1093/nar/gkt1209.

    Article 
    PubMed 

    Google Scholar 

  • Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26:1641–50.

    Article 

    Google Scholar 

  • R Core Team: R: A language and environment for statistical computing. In. Vienna, Austria: R Foundation for Statistical Computing; 2017.

  • RStudio Team: RStudio: integrated development for R. In., vol. 42. Boston, MA: RStudio, Inc.; 2015.

  • Wickham H. ggplot2: elegant graphics for data analysis. J Stat Softw. 2010;35:65–88.

    Google Scholar 

  • Chen H, Boutros PC. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinf. 2011;12:35.

    Article 

    Google Scholar 

  • Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x.

    Article 

    Google Scholar 

  • Yamamoto K, Hackley KC, Kelly WR, Panno SV, Sekiguchi Y, Sanford RA, et al. Diversity and geochemical community assembly processes of the living rare biosphere in a sand-and-gravel aquifer ecosystem in the Midwestern United States. Sci Rep. 2019;9. https://doi.org/10.1038/s41598-019-49996-z.

  • Galand PE, Casamayor EO, Kirchman DL, Lovejoy C. Ecology of the rare microbial biosphere of the Arctic Ocean. Proc Natl Acad Sci. 2009;106:22427–32. https://doi.org/10.1073/pnas.0908284106.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reveillaud J, Maignien L, Murat Eren A, Huber JA, Apprill A, Sogin ML, et al. Host-specificity among abundant and rare taxa in the sponge microbiome. ISME J. 2014;8:1198–209. https://doi.org/10.1038/ismej.2013.227.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Logares R, Audic S, Bass D, Bittner L, Boutte C, Christen R, et al. Patterns of rare and abundant marine microbial eukaryotes. Curr Biol. 2014;24:813–21. https://doi.org/10.1016/j.cub.2014.02.050.

    Article 
    PubMed 

    Google Scholar 

  • Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. Activity of abundant and rare bacteria in a coastal ocean. Proc Natl Acad Sci. 2011;108:12776–81. https://doi.org/10.1073/pnas.1101405108.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hirsch JE. An index to quantify an individual’s scientific research output. Proc Natl Acad Sci USA. 2005;102:16569. https://doi.org/10.1073/pnas.0507655102.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haegeman B, Hamelin J, Moriarty J, Neal P, Dushoff J, Weitz JS. Robust estimation of microbial diversity in theory and in practice. ISME J. 2013;7:1092–101. https://doi.org/10.1038/ismej.2013.10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics (Oxford, England). 2004;20:289–90.

    Article 

    Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–4.

    Article 

    Google Scholar 

  • Stegen JC, Lin X, Konopka AE, Fredrickson JK. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 2012;6:1653–64. https://doi.org/10.1038/ismej.2012.22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiao S, Lu Y. Soil pH and temperature regulate assembly processes of abundant and rare bacterial communities in agricultural ecosystems. Environ Microbiol. 2020;22:1052–65. https://doi.org/10.1111/1462-2920.14815.

    Article 
    PubMed 

    Google Scholar 

  • Logares R, Lindström ES, Langenheder S, Logue JB, Paterson H, Laybourn-Parry J, et al. Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME J. 2012;7:937–48. https://doi.org/10.1038/ismej.2012.168.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kurm V, van der Putten WH, Weidner S, Geisen S, Snoek BL, Bakx T, et al. Competition and predation as possible causes of bacterial rarity. Environ Microbiol. 2019;21:1356–68. https://doi.org/10.1111/1462-2920.14569.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aanderud ZT, Saurey S, Ball BA, Wall DH, Barrett JE, Muscarella ME, et al. Stoichiometric shifts in Soil C:N:P promote bacterial taxa dominance, maintain biodiversity, and deconstruct community assemblages. Front Microbiol. 2018;9:1401 https://doi.org/10.3389/fmicb.2018.01401.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sloan WT, Woodcock S, Lunn M, Head IM, Curtis TP. Modeling taxa-abundance distributions in microbial communities using environmental sequence data. Microb Ecol. 2007;53:443–55. https://doi.org/10.1007/s00248-006-9141-x.

    Article 
    PubMed 

    Google Scholar 

  • Magurran AE, McGill BJ. Biological diversity: frontiers in measurement and assessment. Oxford University Press; 2011.

  • Richter-Heitmann T, Hofner B, Krah FS, Sikorski J, Wust PK, Bunk B, et al. Stochastic dispersal rather than deterministic selection explains the spatio-temporal distribution of soil bacteria in a temperate grassland. Front Microbiol. 2020;11:1391. https://doi.org/10.3389/fmicb.2020.01391.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ivanov II, Honda K. Intestinal commensal microbes as immune modulators. Cell Host Microbe. 2012;12:496–508. https://doi.org/10.1016/j.chom.2012.09.009.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Veelen HPJ, Falcao Salles J, Tieleman BI. Multi-level comparisons of cloacal, skin, feather and nest-associated microbiota suggest considerable influence of horizontal acquisition on the microbiota assembly of sympatric woodlarks and skylarks. Microbiome. 2017;5:156. https://doi.org/10.1186/s40168-017-0371-6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Warmink JA, Nazir R, Corten B, van Elsas JD. Hitchhikers on the fungal highway: The helper effect for bacterial migration via fungal hyphae. Soil Biology Biochem. 2011;43:760–5. https://doi.org/10.1016/j.soilbio.2010.12.009.

    Article 

    Google Scholar 

  • Snell Taylor SJ, Evans BS, White EP, Hurlbert AH. The prevalence and impact of transient species in ecological communities. Ecology. 2018;99:1825–35. https://doi.org/10.1002/ecy.2398.

    Article 
    PubMed 

    Google Scholar 

  • Kurm V, Geisen S, Gera Hol WH. A low proportion of rare bacterial taxa responds to abiotic changes compared with dominant taxa. Environ Microbiol. 2019;21:750–8. https://doi.org/10.1111/1462-2920.14492.

    Article 
    PubMed 

    Google Scholar 

  • Wang Y, Hatt JK, Tsementzi D, Rodriguez RL, Ruiz-Perez CA, Weigand MR, et al. Quantifying the Importance of the Rare Biosphere for Microbial Community Response to Organic Pollutants in a Freshwater Ecosystem. Appl Environ Microbiol. 2017;83:e03321–16. https://doi.org/10.1128/AEM.03321-16.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao J, Jia X, Pang S, Hu Y, Li Y, Wang Q. Functional structure, taxonomic composition and the dominant assembly processes of soil prokaryotic community along an altitudinal gradient. Appl Soil Ecol. 2020;155. https://doi.org/10.1016/j.apsoil.2020.103647.

  • Meyer KM, Memiaghe H, Korte L, Kenfack D, Alonso A, Bohannan BJM. Why do microbes exhibit weak biogeographic patterns. ISME J. 2018;12:1404–13. https://doi.org/10.1038/s41396-018-0103-3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anderson RE, Sogin ML, Baross JA. Biogeography and ecology of the rare and abundant microbial lineages in deep-sea hydrothermal vents. FEMS Microbiol Ecol. 2015;91:1–11. https://doi.org/10.1093/femsec/fiu016.

    Article 
    PubMed 

    Google Scholar 

  • Mallon CA, Le Roux X, van Doorn GS, Dini-Andreote F, Poly F, Salles JF. The impact of failure: unsuccessful bacterial invasions steer the soil microbial community away from the invader’s niche. ISME J. 2018;12:728–41. https://doi.org/10.1038/s41396-017-0003-y.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Langenheder S, Bulling MT, Solan M, Prosser JI. Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity. PLoS One. 2010;5:e10834. https://doi.org/10.1371/journal.pone.0010834.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bardgett RD, Van Der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505.

    Article 

    Google Scholar 

  • Griffiths B, Ritz K, Wheatley R, Kuan H, Boag B, Christensen S, et al. An examination of the biodiversity–ecosystem function relationship in arable soil microbial communities. Soil Biol Biochem. 2001;33:1713–22.

    Article 

    Google Scholar 

  • Hooper DU, Chapin F, Ewel J, Hector A, Inchausti P, Lavorel S, et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr. 2005;75:3–35.

    Article 

    Google Scholar 

  • Logares R, Tesson SVM, Canback B, Pontarp M, Hedlund K, Rengefors K. Contrasting prevalence of selection and drift in the community structuring of bacteria and microbial eukaryotes. Environ Microbiol. 2018;20:2231–40. https://doi.org/10.1111/1462-2920.14265.

    Article 
    PubMed 

    Google Scholar 

  • Zhou J, Ning D. Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol Rev. 2017;81:e00002–17.

    Article 

    Google Scholar 

  • Logares R, Deutschmann IM, Junger PC, Giner CR, Krabberod AK, Schmidt TSB, et al. Disentangling the mechanisms shaping the surface ocean microbiota. Microbiome. 2020;8:55. https://doi.org/10.1186/s40168-020-00827-8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dini-Andreote F, Brossi MJ, van Elsas JD, Salles JF. Reconstructing the genetic potential of the microbially-mediated nitrogen cycle in a salt marsh ecosystem. Front Microbiol. 2016;7:902. https://doi.org/10.3389/fmicb.2016.00902.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Ancient marine sediment DNA reveals diatom transition in Antarctica

    Small eddies play a big role in feeding ocean microbes