in

Urban population structure and dispersal of an Australian mosquito (Aedes notoscriptus) involved in disease transmission

  • Aguillon SM, Fitzpatrick JW, Bowman R, Schoech SJ, Clark AG, Coop G, Chen N (2017) Deconstructing isolation-by-distance: The genomic consequences of limited dispersal. PLoS Genet 13:e1006911

    Article 

    Google Scholar 

  • Browning BL, Browning SR (2016) Genotype imputation with millions of reference samples. Am J Hum Genet 98:116–126

    Article 

    Google Scholar 

  • Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140

    Article 

    Google Scholar 

  • Carvajal TM, Ogiski K, Yaegeshi S, Hernandez LFT, Viacrusis KM, Ho HT, Amalin DM, Watanable K (2020) Fine-scale population genetic structure of dengue mosquito vector, Aedes aegypti, in metropolitan manila, Philippines. PLOS Neglected Tropical Dis 14:e0008279

    Article 

    Google Scholar 

  • Christophers SR. 1960. Aedes aegypti: the yellow fever mosquito. CUP Archive.

  • Combs M, Puckett EE, Richardson J, Mims D, Munshi-South J (2018) Spatial population genomics of the brown rat (Rattus norvegicus) in New York City. Mol Ecol 27:83–98

    Article 

    Google Scholar 

  • Conomos MP, Reiner AP, Weir BS, Thornton TA (2016) Model-free estimation of recent genetic relatedness. Am J Hum Genet 98:127–148

    Article 

    Google Scholar 

  • Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO et al. (2021) Twelve years of SAMtools and BCFtools. GigaScience 10:1–4

    Article 

    Google Scholar 

  • Doak DF, Marino PC, Kareiva PM (1992) Spatial scale mediates the influence of habitat fragmentation on dispersal success: Implications for conservation. Theor Popul Biol 41:315–336

    Article 

    Google Scholar 

  • Dobrotworsky NV (1965) The mosquitoes of Victoria (Diptera, Culicidae). Melbourne University Press, London

    Google Scholar 

  • Doggett SL, Russell RC (1997) Aedes notoscriptus can transmit inland and coastal isolates of Ross River and Barmah Forest viruses from New South Wales. Arbovirus Asutrlian Reg 7:79–81

    Google Scholar 

  • Dray S, Dufour A-B (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Article 

    Google Scholar 

  • Edland T (1983) Attacks by the winter moth group (Operophtera brumata, Agriopis aurantiaria, Erannis defoliaria) in orchards. A system for forecasting the expected attack degree. Gartneryrket 73:208–212

    Google Scholar 

  • Endersby NM, White WL, Chan J, Hust T, Rašić G, Miller A, Hoffmann AA (2013) Evidence of cryptic genetic lineages within Aedes notoscriptus (Skuse). Infect, Genet Evolution 18:191–201

    Article 

    Google Scholar 

  • Feria-Arroyo T, Aguilar C, Vazquez CQ, Santos-Luna R, Roman-Perez S, Oraby T et al. (2020) A tale of two cities: Aedes Mosquito surveillance across the Texas-Mexico Border. Subtropical Agriculture Environ 71:12

    Google Scholar 

  • Fountain T, Husby A, Nonaka E, DiLeo MF, Korhonen JH, Rastas P et al. (2018) Inferring dispersal across a fragmented landscape using reconstructed families in the Glanville fritillary butterfly. Evolut Appl 11:287–297

    Article 

    Google Scholar 

  • Goldberg EE, Lande R (2015) Species’ borders and dispersal barriers. Am Naturalist 170:297–304

    Article 

    Google Scholar 

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19

    Article 

    Google Scholar 

  • Guan D, McCarthy SA, Wood J, Howe K, Wang Y, Durbin R (2020) Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics 36(9):2896–2898

    Article 

    Google Scholar 

  • Guerra CA, Reiner RC, Perkins TA, Lindsay SW, Midega JT, Brady OJ et al. (2014) A global assembly of adult female mosquito mark-release-recapture data to inform the control of mosquito-born pathogens. Parasites Vectors 7(1):1–15

    Article 

    Google Scholar 

  • Hardy OJ, Vekemans X (2002) spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article 

    Google Scholar 

  • Harrington LC, Edman JD, Scott TW (2001) Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood? J Med Entomol 38:411–422

    Article 

    Google Scholar 

  • Harrington LC, Scott TW, Lerdthusnee K, Coleman RC, Costero A, Clark GG et al. (2005) Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am J tropical Med Hyg 72(2):209–220

    Article 

    Google Scholar 

  • Harris AF, McKemey AR, Nimmo D, Curtis Z, Black I, Morgan SA et al. (2012) Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes. Nat Biotechnol 30:828–830

    Article 

    Google Scholar 

  • Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F et al. (2011) Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 2011 476 7361 476:454–457

    Google Scholar 

  • Honório AN, da Costa Silva W, José Leite P, Monteiro Gonçalves J, Philip Lounibos L, Lourenço-de-Oliveira R (2003) Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an Urban Endemic dengue Area in the State of Rio de Janeiro, Brazil. Memórias do Inst Oswaldo Cruz, Rio de Jan 98:191–198

    Article 

    Google Scholar 

  • Jasper M, Schmidt TL, Ahmad NW, Sinkins SP, Hoffmann AA (2019) A genomic approach to inferring kinship reveals limited intergenerational dispersal in the yellow fever mosquito. Mol Ecol Resour 22.3:1200–1212

  • Jasper M, Schmidt TL, Hoffmann AA (2022) Estimating dispersal using close kin dyads: The KINDISPERSE R package. Mol Ecol Resour 22:1200–1212

    Article 

    Google Scholar 

  • Jeger MJ (1999) Improved understanding of dispersal in crop pest and disease management: current status and future directions. Agric For Meteorol 97:331–349

    Article 

    Google Scholar 

  • Johnson MTJ, Munshi-South J (2017) Evolution of life in urban environments. Science 358

  • Juarez JG, Chaves LF, Garcia-Luna SM, Martin E, Badillo-Vargas I, Medeiros MCI, Hamer GL (2021) Variable coverage in an Autocidal Gravid Ovitrap intervention impacts efficacy of Aedes aegypti control. J Appl Ecol 58:2075–2086

    Article 

    Google Scholar 

  • Kay BH, Watson TM, Ryan PA (2008) Definition of productive Aedes notoscriptus (Diptera: Culicidae) habitats in western Brisbane, and a strategy for their control. Aust J Entomol 47:142–148

    Article 

    Google Scholar 

  • Kolmogorov M, Yuan J, Lin Y, Pevzner P (2019) Assembly of long error-prone reads using repeat graphs. Nat Biotechnol 37.5:540–546

    Article 

    Google Scholar 

  • Kotsakiozi P, Evans BR, Gloria-Soria A, Kamgang B, Mayanja M, Lutwama J et al. (2018) Population structure of a vector of human diseases: Aedes aegypti in its ancestral range, Africa. Ecol Evolution 8:7835–7848

    Article 

    Google Scholar 

  • Krueger F (2021) Trimgalore. GitHub repository, https://github.com/FelixKrueger/TrilGalore.

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat methods 9:357

    Article 

    Google Scholar 

  • Lee DJ, Hicks MM, Griffiths M, Debenham ML, Bryan JH, Russel RC et al. (1987) The Culicidae of the Australasian Region: Genus Anopheles (Anopheles, Cellia). Australian Government Publishing Service: 315.

  • Liew CCFC, Curtis CF (2004) Horizontal and vertical dispersal of dengue vector mosquitoes, Aedes aegypti and Aedes albopictus, in Singapore. Med Vetenary Enetomology 18.4:351–360

    Article 

    Google Scholar 

  • Malinsky M, Trucchi E, Lawson DJ, Falush D (2018) RADpainter and fineRADstructure: Population Inference from RADseq Data. Mol Biol Evolution 35:1284–1290

    Article 

    Google Scholar 

  • McCarroll L, Paton MG, Karunaratne SHPP, Jayasuryia HTR, Kalpage KSP, Hemingway J (2000) Insecticides and mosquito-borne disease. Nature 407:961–962. 6807 407

    Article 

    Google Scholar 

  • Metzger ME, Wekesa JW, Kluh S, Fujioka KK, Saviskas R, Arugay A et al. (2021) Detection and establishment of Aedes notoscriptus (Diptera: Culicidae) mosquitoes in Southern California, United States. J Med Entomol 59.1:67–77

    Google Scholar 

  • Muir LE, Kay BH (1998) Aedes aegypti survival and dispersal estimated by mark-release-recapture in northern Australia. Am J Tropical Med Hyg 58:277–282

    Article 

    Google Scholar 

  • Palsøll P, Zachariah MP, Bérubé M (2010) Detecting populations in the ‘ambiguous’ zone: Kinship-based estimation of population structure at low genetic divergence. Mol Ecol Resourses 10:797–805

    Article 

    Google Scholar 

  • Rasheed SB, Boots M, Frantz AC, Butlin RK (2013) Population structure of the mosquito Aedes aegypti (Stegomyia aegypti) in Pakistan. Med Vet Entomol 27:430–440

    Article 

    Google Scholar 

  • Rašić G, Filipović I, Weeks AR, Hoffmann AA (2014) Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti. BMC genomics 15(1):1–12

    Article 

    Google Scholar 

  • Reiter P, Amador MA, Anderson RA, Clark GG (1995) Short report: dispersal of Aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs. Am J Tropical Med Hyg 52:177–179

    Article 

    Google Scholar 

  • Ribeiro Jr JP, Diggle PJ (2001) geoR: a package for geostatistical analysis. R N. 1.2:14–18

    Google Scholar 

  • Ritchie SA (2001) Effect of some animal feeds and oviposition substrates on Aedes oviposition in ovitraps in Cairns. Aust J Am Mosq Contol Assoc 11:2

    Google Scholar 

  • Rousset (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62

    Article 

    Google Scholar 

  • RStudio Team (2021) RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA, http://www.rstudio.com/

  • Russell RC, Geary MJ (1992) The susceptibility of the mosquitoes Aedes notoscriptus and Culex annulirostris to infection with dog heartworm Dirofilaria immitis and their vector efficiency. Med Vet Entomol 6:154–158

    Article 

    Google Scholar 

  • Schmidt TL, Filipović I, Hoffmann AA, Rašić G (2018) Fine-scale landscape genomics helps explain the slow spatial spread of Wolbachia through the Aedes aegypti population in Cairns, Australia. Heredity 120:386–395

    Article 

    Google Scholar 

  • Schmidt TL, Swan T, Chung J, Karl S, Demok S, Yang Q et al. (2021) Spatial population genomics of a recent mosquito invasion. Mol Ecol 30:1174–1189

    Article 

    Google Scholar 

  • Schmidt TL, Elfekih S, Cao LJ, Wie SJ, Al-Fageeh MB, Nassar M, et al. (2022) Close kin dyads indicate intergenerational dispersal and barriers. The American Naturalist.

  • Shirk AJ, Cushman SA (2011) sGD: software for estimating spatially explicit indices of genetic diversity. Mol Ecol Resour 11:922–934

    Article 

    Google Scholar 

  • Shirk AJ, Cushman SA (2014) Spatially-explicit estimation of Wright’s neighborhood size in continuous populations. Front Ecol Evolution 2:62

    Article 

    Google Scholar 

  • Sumner J, Rousset F, Estoup A, Moritz C (2001) ‘Neighbourhood’ size, dispersal and density estimates in the prickly forest skink (Gnypetoscincus queenslandiae) using individual genetic and demographic methods. Mol Ecol 10:1917–1927

    Article 

    Google Scholar 

  • Sunahara T, Mogi M (2004) Searching clusters of community composition along multiple spatial scales: a case study on aquatic invertebrate communities in bamboo stumps in West Timor. Popul Ecol 46:149–158

    Article 

    Google Scholar 

  • Tantowijoyo W, Arguni E, Johnson P, Budiwati N, Nurhayati PI, Fitriana I et al. (2016) Spatial and temporal variation in Aedes aegypti and Aedes albopictus (Diptera: Culicidae) numbers in the Yogyakarta area of Java, Indonesia, with implications for Wolbachia Releases. J Med Entomol 53:188–198

    Article 

    Google Scholar 

  • Trense D, Schmidt TL, Yang Q, Chung J, Hoffmann AA, Fischer K (2021) Anthropogenic and natural barriers affect genetic connectivity in an Alpine butterfly. Mol Ecol 30:114–130

    Article 

    Google Scholar 

  • Trewin B, Pagendam DE, Darbro JM, Health Q, Devine GJ (2019) Urban Landscape Features Influence the Movement and Distribution of the Australian Container-Inhabiting Mosquito Vectors Aedes aegypti (Diptera: Culicidae) and Aedes notoscriptus (Epidemiology of Ross River virus in South East Queensland, Australia. J Med Entomol 57.2:443–453

  • Verdonschot PFM, Besse-Lototskaya AA (2014) Flight distance of mosquitoes (Culicidae): A metadata analysis to support the management of barrier zones around rewetted and newly constructed wetlands. Limnologica 45:69–79

    Article 

    Google Scholar 

  • Wallace JR, Mangas KM, Porter JL, Marcsisin R, Pidot SJ, Howden B et al. (2017) Mycobacterium ulcerans low infectious dose and mechanical transmission support insect bites and puncturing injuries in the spread of Buruli ulcer. PLoS Neglected Tropical Dis 11(4):e0005553

    Article 

    Google Scholar 

  • Watson TM, Kay BH (1999) Vector competence of Aedes notoscriptus (Diptera: Culicidae) for Barmah Forest virus and of this species and Aedes aegypti (Diptera: Culicidae) for dengue 1-4 viruses in Queensland, Australia. J Med Entomol 36:508–514

    Article 

    Google Scholar 

  • Watson TM, Saul A, Kay BH (2000) Aedes notoscriptus (Diptera: Culicidae) Survival and Dispersal Estimated by Mark-Release-Recapture in Brisbane, Queensland, Australia. J Med Entomol 37:380–384

    Article 

    Google Scholar 

  • Wright S (1946) Isolation by distance under diverse systems of mating. Genetics 31:39

    Article 

    Google Scholar 

  • Ye C, Ma ZS, Cannon CH, Pop M, Douglas WV (2012) Exploiting sparseness in de novo genome assembly. BMC Bioinforma 13:1–8

    Article 

    Google Scholar 

  • Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA (2013) The MaSuRCA genome assembler. Bioinformatics 21:2669–77

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Food for thought, thought for food

    Palau’s warmest reefs harbor thermally tolerant corals that thrive across different habitats