in

Uropygial gland microbiota differ between free-living and captive songbirds

  • Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiol. Rev. 32, 723–735 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Archie, E. A. & Theis, K. R. Animal behaviour meets microbial ecology. Anim. Behav. 82, 425–436 (2011).

    Article 

    Google Scholar 

  • McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. 110, 3229–3236 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cresci, G. A. & Bawden, E. Gut microbiome: What we do and don’t know. Nutr. Clin. Pract. Off. Publ. Am. Soc. Parenter. Enter. Nutr. 30, 734–746 (2015).

    Google Scholar 

  • Martin, C. R., Osadchiy, V., Kalani, A. & Mayer, E. A. The brain–gut–microbiome axis. Cell. Mol. Gastroenterol. Hepatol. 6, 133–148 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davidson, G. L., Raulo, A. & Knowles, S. C. Identifying microbiome-mediated behaviour in wild vertebrates. Trends Ecol. Evol. 35, 972–980 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Ushida, K., Kock, R. & Sundset, M. A. Wildlife microbiology. Microorganisms 9, 1968 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ezenwa, V. O., Gerardo, N. M., Inouye, D. W., Medina, M. & Xavier, J. B. Animal behavior and the microbiome. Science 338, 198–199 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Ezenwa, V. O. & Williams, A. E. Microbes and animal olfactory communication: Where do we go from here?. BioEssays 36, 847–854 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Carthey, A. J. R., Gillings, M. R. & Blumstein, D. T. The extended genotype: Microbially mediated olfactory communication. Trends Ecol. Evol. 33, 885–894 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Maraci, Ö., Engel, K. & Caspers, B. A. Olfactory communication via microbiota: What is known in birds?. Genes 9, 387 (2018).

    Article 
    PubMed Central 

    Google Scholar 

  • Hird, S. M. Evolutionary biology needs wild microbiomes. Front. Microbiol. 8, 725 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alberdi, A., Martin Bideguren, G. & Aizpurua, O. Diversity and compositional changes in the gut microbiota of wild and captive vertebrates: A meta-analysis. Sci. Rep. 11, 22660 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leclaire, S., Nielsen, J. F. & Drea, C. M. Bacterial communities in meerkat anal scent secretions vary with host sex, age, and group membership. Behav. Ecol. 25, 996–1004 (2014).

    Article 

    Google Scholar 

  • Theis, K. R., Schmidt, T. M. & Holekamp, K. E. Evidence for a bacterial mechanism for group-specific social odors among hyenas. Sci. Rep. 2, 615 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Theis, K. R. et al. Symbiotic bacteria appear to mediate hyena social odors. Proc. Natl. Acad. Sci. 110, 1983219837 (2013).

    Article 
    ADS 

    Google Scholar 

  • Gassett, J. W., Dasher, K. A., Miller, K. V., Osborn, D. A. & Russell, S. M. White-tailed deer tarsal glands: Sex and age-related variation in microbial flora. Mammalia 64, 371–377 (2000).

    Article 

    Google Scholar 

  • Sin, Y. W., Buesching, C. D., Burke, T. & Macdonald, D. W. Molecular characterization of the microbial communities in the subcaudal gland secretion of the European badger (Meles meles). FEMS Microbiol. Ecol. 81, 648–659 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Albone, E. S., Eglinton, G., Walker, J. M. & Ware, G. C. The anal sac secretion of the red fox (Vulpes vulpes); its chemistry and microbiology. A comparison with the anal sac secretion of the lion (Panthera leo). Life Sci. 14, 387–400 (1974).

    Article 
    PubMed 

    Google Scholar 

  • Greene, L. K. et al. The importance of scale in comparative microbiome research: New insights from the gut and glands of captive and wild lemurs. Am. J. Primatol. 81, e22974 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Leclaire, S., Jacob, S., Greene, L. K., Dubay, G. R. & Drea, C. M. Social odours covary with bacterial community in the anal secretions of wild meerkats. Sci. Rep. 7, 3240 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grieves, L. A., Gloor, G. B., Kelly, T. R., Bernards, M. A. & MacDougall-Shackleton, E. A. Preen gland microbiota of songbirds differ across populations but not sexes. J. Anim. Ecol. 90, 2202–2212 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Whittaker, D. J. et al. Social environment has a primary influence on the microbial and odor profiles of a chemically signaling songbird. Front. Ecol. Evol. 4, 1–15 (2016).

    Article 

    Google Scholar 

  • Grieves, L. A., Gloor, G. B., Bernards, M. A. & MacDougall-Shackleton, E. A. Preen gland microbiota covary with major histocompatibility complex genotype in a songbird. R. Soc. Open Sci. 8, 210936 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Whittaker, D. J. et al. Experimental evidence that symbiotic bacteria produce chemical cues in a songbird. J. Exp. Biol. 222, jeb202978 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Martín-Vivaldi, M. et al. Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria. Proc. R. Soc. B Biol. Sci. 277, 123–130 (2010).

    Article 

    Google Scholar 

  • Whittaker, D. J. et al. Intraspecific preen oil odor preferences in dark-eyed juncos (Junco hyemalis). Behav. Ecol. 22, 1256–1263 (2011).

    Article 

    Google Scholar 

  • Grieves, L. A., Bernards, M. A. & MacDougall-Shackleton, E. A. Behavioural responses of songbirds to preen oil odour cues of sex and species. Anim. Behav. 156, 57–65 (2019).

    Article 

    Google Scholar 

  • Grieves, L. A., Gloor, G. B., Bernards, M. A. & MacDougall-Shackleton, E. A. Songbirds show odour-based discrimination of similarity and diversity at the major histocompatibility complex. Anim. Behav. 158, 131–138 (2019).

    Article 

    Google Scholar 

  • Pearce, D. S., Hoover, B. A., Jennings, S., Nevitt, G. A. & Docherty, K. M. Morphological and genetic factors shape the microbiome of a seabird species (Oceanodroma leucorhoa) more than environmental and social factors. Microbiome 5, 146 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leclaire, S. et al. Plumage microbiota covaries with the major histocompatibility complex in blue petrels. Mol. Ecol. 28, 833–846 (2019).

    PubMed 

    Google Scholar 

  • Bisson, I.-A., Marra, P. P., Burtt, E. H. Jr., Sikaroodi, M. & Gillevet, P. M. Variation in plumage microbiota depends on season and migration. Microb. Ecol. 58, 212 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Kartzinel, T. R., Hsing, J. C., Musili, P. M., Brown, B. R. & Pringle, R. M. Covariation of diet and gut microbiome in African megafauna. Proc. Natl. Acad. Sci. 116, 23588–23593 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arcese, P., Sogge, M. K., Marr, A. B. & Patten, M. A. Song sparrow (Melospiza melodia), version 2.0. In The Birds of North America (ed. Rodewald, P. G.) (Cornell Lab of Ornithology, 2002).

    Google Scholar 

  • Breton, J. et al. Ecotoxicology inside the gut: Impact of heavy metals on the mouse microbiome. BMC Pharmacol. Toxicol. 14, 62 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ruan, Y. et al. High doses of copper and mercury changed cecal microbiota in female mice. Biol. Trace Elem. Res. 189, 134–144 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Lin, X. et al. Acute oral methylmercury exposure perturbs the gut microbiome and alters gut-brain axis related metabolites in rats. Ecotoxicol. Environ. Saf. 190, 110130 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Grieves, L. A. et al. Food stress, but not experimental exposure to mercury, affects songbird preen oil composition. Ecotoxicology 29, 275–285 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Christian, V. J., Miller, K. R. & Martindale, R. G. Food insecurity, malnutrition, and the microbiome. Curr. Nutr. Rep. 9, 356–360 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Genton, L., Cani, P. D. & Schrenzel, J. Alterations of gut barrier and gut microbiota in food restriction, food deprivation and protein-energy wasting. Clin. Nutr. 34, 341–349 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Noguera, J. C., Aira, M., Pérez-Losada, M., Domínguez, J. & Velando, A. Glucocorticoids modulate gastrointestinal microbiome in a wild bird. R. Soc. Open Sci. 5, 171743 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wienemann, T. et al. The bacterial microbiota in the ceca of Capercaillie (Tetrao urogallus) differs between wild and captive birds. Syst. Appl. Microbiol. 34, 542–551 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Salgado-Flores, A., Tveit, A. T., Wright, A.-D., Pope, P. B. & Sundset, M. A. Characterization of the cecum microbiome from wild and captive rock ptarmigans indigenous to Arctic Norway. PLoS One 14, e0213503 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hird, S. M., Sánchez, C., Carstens, B. C. & Brumfield, R. T. Comparative gut microbiota of 59 neotropical bird species. Front. Microbiol. 6, 1403 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thomas, R. H. et al. Use of TLC-FID and GC-MS⁄FID to examine the effects of migratory state, diet and captivity on preen wax composition in White-throated Sparrows Zonotrichia albicollis. Ibis 152, 782–792 (2010).

    Article 

    Google Scholar 

  • Xie, Y. et al. Effects of captivity and artificial breeding on microbiota in feces of the red-crowned crane (Grus japonensis). Sci. Rep. 6, 33350 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • San Juan, P. A., Castro, I. & Dhami, M. K. Captivity reduces diversity and shifts composition of the Brown Kiwi microbiome. Anim. Microbiome 3, 48 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, H., Wu, F.-T., Zhou, Q.-H. & Zhao, D.-P. Comparative analysis of gut microbiota in captive and wild oriental white storks: Implications for conservation biology. Front. Microbiol. 12, 649466 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodríguez-Ruano, S. M. et al. The hoopoe’s uropygial gland hosts a bacterial community influenced by the living conditions of the bird. PLoS One 10, e0139734 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xenoulis, P. G. et al. Molecular characterization of the cloacal microbiota of wild and captive parrots. Vet. Microbiol. 146, 320–325 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Kelly, T. R., Vinson, A. E., King, G. M. & Lattin, C. R. No guts about it: Captivity, but not neophobia phenotype, influences the cloacal microbiome of house sparrows (Passer domesticus). Integr. Org. Biol. 4, obac010 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grond, K., Sandercock, B. K., Jumpponen, A. & Zeglin, L. H. The avian gut microbiota: Community, physiology and function in wild birds. J. Avian Biol. 49, e01788 (2018).

    Article 

    Google Scholar 

  • Videvall, E., Strandh, M., Engelbrecht, A., Cloete, S. & Cornwallis, C. K. Measuring the gut microbiome in birds: Comparison of faecal and cloacal sampling. Mol. Ecol. Resour. 18, 424–434 (2018).

    Article 
    PubMed 

    Google Scholar 

  • McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kohl, K. D., Skopec, M. M. & Dearing, M. D. Captivity results in disparate loss of gut microbial diversity in closely related hosts. Conserv. Physiol. 2, cou009 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martínez-Mota, R., Kohl, K. D., Orr, T. J. & Denise Dearing, M. Natural diets promote retention of the native gut microbiota in captive rodents. ISME J. 14, 67–78 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Chatelain, M., Frantz, A., Gasparini, J. & Leclaire, S. Experimental exposure to trace metals affects plumage bacterial community in the feral pigeon. J. Avian Biol. 47, 521–529 (2016).

    Article 

    Google Scholar 

  • Jacob, S. et al. Uropygial gland size and composition varies according to experimentally modified microbiome in great tits. BMC Evol. Biol. 14, 134 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jacob, J. & Ziswiler, V. The uropygial gland. In Avian Biology Vol. 6 (eds Farner, D. S. et al.) 199–324 (Academic Press, 1982).

    Chapter 

    Google Scholar 

  • Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat. Rev. Microbiol. 16, 143 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Egert, M. & Simmering, R. The microbiota of the human skin. Microbiota Hum. Body 902, 61–81 (2016).

    Article 

    Google Scholar 

  • Grice, E. A. et al. A diversity profile of the human skin microbiota. Genome Res. 18, 1043–1050 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, B. et al. Molecular and biochemical characterization of a novel xylanase from Massilia sp. RBM26 isolated from the feces of Rhinopithecus bieti. J. Microbiol. Biotechnol. 26, 9–19 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Rosenberg, E. The Prokaryotes (Springer, 2014).

    Book 

    Google Scholar 

  • Tang, J., Huang, J., Qiao, Z., Wang, R. & Wang, G. Mucilaginibacter pedocola sp. Nov., isolated from a heavy-metal-contaminated paddy field. Int. J. Syst. Evol. Microbiol. 66, 4033–4038 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Vasconcelos, A. L. et al. Mucilaginibacter sp. strain metal (loid) and antibiotic resistance isolated from estuarine soil contaminated mine tailing from the Fundão dam. Genes 13, 174 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dewi, G. & Kollanoor Johny, A. Lactobacillus in food animal production—A forerunner for clean label prospects in animal-derived products. Front. Sustain. Food Syst. 6, 831195 (2022).

    Article 

    Google Scholar 

  • Dworkin, M. The Prokaryotes Proteobacteria: Alpha and Beta Subclasses (Springer Science & Business Media, 2006).

    Book 

    Google Scholar 

  • Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: A call for the consideration of host-associated microbiota in wildlife management practices. Proc. R. Soc. B 286, 20182448 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T. G. & Cryan, J. F. Microbiota and the social brain. Science 366, eaar2016 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Bottini, C. L., MacDougall-Shackleton, S. A., Branfireun, B. A. & Hobson, K. A. Feathers accurately reflect blood mercury at time of feather growth in a songbird. Sci. Total Environ. 775, 145739 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Kelly, T. R., Bonner, S. J., MacDougall-Shackleton, S. A. & MacDougall-Shackleton, E. A. Exposing migratory sparrows to Plasmodium suggests costs of resistance, not necessarily of infection itself. J. Exp. Zool. Part Ecol. Integr. Physiol. 329, 5–14 (2018).

    Article 

    Google Scholar 

  • Whittaker, D. J. & Hagelin, J. C. Female-based patterns and social function in avian chemical communication. J. Chem. Ecol. 47, 53–62 (2020).

    Google Scholar 

  • Griffiths, R., Double, M. C., Orr, K. & Dawson, R. J. A DNA test to sex most birds. Mol. Ecol. 7, 1071–1075 (1998).

    Article 
    PubMed 

    Google Scholar 

  • Canadian Council on Animal Care (CCAC). Three Rs | Trois R :: About the Three Rs. https://3rs.ccac.ca/.

  • Lane, D. J. et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. 82, 6955–6959 (1985).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Gloor, G. B. et al. Microbiome profiling by Illumina sequencing of combinatorial sequence-tagged PCR products. PLoS One 5, e15406 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bian, G. et al. The gut microbiota of healthy aged Chinese is similar to that of the healthy young. Msphere 2, e00327-e417 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stoler, N. & Nekrutenko, A. Sequencing error profiles of Illumina sequencing instruments. NAR Genom. Bioinform. 3, lqab019 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aitchison, J. The Statistical Analysis of Compositional Data (Chapman and Hall, 1986).

    Book 
    MATH 

    Google Scholar 

  • Gloor, G. B. & Reid, G. Compositional analysis: A valid approach to analyze microbiome high-throughput sequencing data. Can. J. Microbiol. 62, 692–703 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Quinn, T. P., Erb, I., Richardson, M. F. & Crowley, T. M. Understanding sequencing data as compositions: An outlook and review. Bioinformatics 34, 2870–2878 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Palarea-Albaladejo, J. & Martin-Fernandez, J. zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst. 143, 85–96 (2015).

    Article 

    Google Scholar 

  • Fernandes, A. D. et al. Unifying the analysis of high-throughput sequencing datasets: Characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2, 15 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aitchison, J. & Greenacre, M. Biplots of compositional data. J. R. Stat. Soc. Ser. C Appl. Stat. 51, 375–392 (2002).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 1–14 (2018).

    Article 

    Google Scholar 

  • R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

    Google Scholar 

  • Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • Dixon, P. & Palmer, M. W. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).

    Article 

    Google Scholar 

  • Fernandes, A. D., Macklaim, J. M., Linn, T. G., Reid, G. & Gloor, G. B. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS One 8, e67019 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nearing, J. T. et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat. Commun. 13, 342 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Halsey, L. G., Curran-Everett, D., Vowler, S. L. & Drummond, G. B. The fickle P value generates irreproducible results. Nat. Methods 12, 179–185 (2015).

    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Multiscale imaging on Saxifraga paniculata provides new insights into yttrium uptake by plants

    In nanotube science, is boron nitride the new carbon?