Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiol. Rev. 32, 723–735 (2008).
Google Scholar
Archie, E. A. & Theis, K. R. Animal behaviour meets microbial ecology. Anim. Behav. 82, 425–436 (2011).
Google Scholar
McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. 110, 3229–3236 (2013).
Google Scholar
Cresci, G. A. & Bawden, E. Gut microbiome: What we do and don’t know. Nutr. Clin. Pract. Off. Publ. Am. Soc. Parenter. Enter. Nutr. 30, 734–746 (2015).
Martin, C. R., Osadchiy, V., Kalani, A. & Mayer, E. A. The brain–gut–microbiome axis. Cell. Mol. Gastroenterol. Hepatol. 6, 133–148 (2018).
Google Scholar
Davidson, G. L., Raulo, A. & Knowles, S. C. Identifying microbiome-mediated behaviour in wild vertebrates. Trends Ecol. Evol. 35, 972–980 (2020).
Google Scholar
Ushida, K., Kock, R. & Sundset, M. A. Wildlife microbiology. Microorganisms 9, 1968 (2021).
Google Scholar
Ezenwa, V. O., Gerardo, N. M., Inouye, D. W., Medina, M. & Xavier, J. B. Animal behavior and the microbiome. Science 338, 198–199 (2012).
Google Scholar
Ezenwa, V. O. & Williams, A. E. Microbes and animal olfactory communication: Where do we go from here?. BioEssays 36, 847–854 (2014).
Google Scholar
Carthey, A. J. R., Gillings, M. R. & Blumstein, D. T. The extended genotype: Microbially mediated olfactory communication. Trends Ecol. Evol. 33, 885–894 (2018).
Google Scholar
Maraci, Ö., Engel, K. & Caspers, B. A. Olfactory communication via microbiota: What is known in birds?. Genes 9, 387 (2018).
Google Scholar
Hird, S. M. Evolutionary biology needs wild microbiomes. Front. Microbiol. 8, 725 (2017).
Google Scholar
Alberdi, A., Martin Bideguren, G. & Aizpurua, O. Diversity and compositional changes in the gut microbiota of wild and captive vertebrates: A meta-analysis. Sci. Rep. 11, 22660 (2021).
Google Scholar
Leclaire, S., Nielsen, J. F. & Drea, C. M. Bacterial communities in meerkat anal scent secretions vary with host sex, age, and group membership. Behav. Ecol. 25, 996–1004 (2014).
Google Scholar
Theis, K. R., Schmidt, T. M. & Holekamp, K. E. Evidence for a bacterial mechanism for group-specific social odors among hyenas. Sci. Rep. 2, 615 (2012).
Google Scholar
Theis, K. R. et al. Symbiotic bacteria appear to mediate hyena social odors. Proc. Natl. Acad. Sci. 110, 1983219837 (2013).
Google Scholar
Gassett, J. W., Dasher, K. A., Miller, K. V., Osborn, D. A. & Russell, S. M. White-tailed deer tarsal glands: Sex and age-related variation in microbial flora. Mammalia 64, 371–377 (2000).
Google Scholar
Sin, Y. W., Buesching, C. D., Burke, T. & Macdonald, D. W. Molecular characterization of the microbial communities in the subcaudal gland secretion of the European badger (Meles meles). FEMS Microbiol. Ecol. 81, 648–659 (2012).
Google Scholar
Albone, E. S., Eglinton, G., Walker, J. M. & Ware, G. C. The anal sac secretion of the red fox (Vulpes vulpes); its chemistry and microbiology. A comparison with the anal sac secretion of the lion (Panthera leo). Life Sci. 14, 387–400 (1974).
Google Scholar
Greene, L. K. et al. The importance of scale in comparative microbiome research: New insights from the gut and glands of captive and wild lemurs. Am. J. Primatol. 81, e22974 (2019).
Google Scholar
Leclaire, S., Jacob, S., Greene, L. K., Dubay, G. R. & Drea, C. M. Social odours covary with bacterial community in the anal secretions of wild meerkats. Sci. Rep. 7, 3240 (2017).
Google Scholar
Grieves, L. A., Gloor, G. B., Kelly, T. R., Bernards, M. A. & MacDougall-Shackleton, E. A. Preen gland microbiota of songbirds differ across populations but not sexes. J. Anim. Ecol. 90, 2202–2212 (2021).
Google Scholar
Whittaker, D. J. et al. Social environment has a primary influence on the microbial and odor profiles of a chemically signaling songbird. Front. Ecol. Evol. 4, 1–15 (2016).
Google Scholar
Grieves, L. A., Gloor, G. B., Bernards, M. A. & MacDougall-Shackleton, E. A. Preen gland microbiota covary with major histocompatibility complex genotype in a songbird. R. Soc. Open Sci. 8, 210936 (2021).
Google Scholar
Whittaker, D. J. et al. Experimental evidence that symbiotic bacteria produce chemical cues in a songbird. J. Exp. Biol. 222, jeb202978 (2019).
Google Scholar
Martín-Vivaldi, M. et al. Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria. Proc. R. Soc. B Biol. Sci. 277, 123–130 (2010).
Google Scholar
Whittaker, D. J. et al. Intraspecific preen oil odor preferences in dark-eyed juncos (Junco hyemalis). Behav. Ecol. 22, 1256–1263 (2011).
Google Scholar
Grieves, L. A., Bernards, M. A. & MacDougall-Shackleton, E. A. Behavioural responses of songbirds to preen oil odour cues of sex and species. Anim. Behav. 156, 57–65 (2019).
Google Scholar
Grieves, L. A., Gloor, G. B., Bernards, M. A. & MacDougall-Shackleton, E. A. Songbirds show odour-based discrimination of similarity and diversity at the major histocompatibility complex. Anim. Behav. 158, 131–138 (2019).
Google Scholar
Pearce, D. S., Hoover, B. A., Jennings, S., Nevitt, G. A. & Docherty, K. M. Morphological and genetic factors shape the microbiome of a seabird species (Oceanodroma leucorhoa) more than environmental and social factors. Microbiome 5, 146 (2017).
Google Scholar
Leclaire, S. et al. Plumage microbiota covaries with the major histocompatibility complex in blue petrels. Mol. Ecol. 28, 833–846 (2019).
Google Scholar
Bisson, I.-A., Marra, P. P., Burtt, E. H. Jr., Sikaroodi, M. & Gillevet, P. M. Variation in plumage microbiota depends on season and migration. Microb. Ecol. 58, 212 (2009).
Google Scholar
Kartzinel, T. R., Hsing, J. C., Musili, P. M., Brown, B. R. & Pringle, R. M. Covariation of diet and gut microbiome in African megafauna. Proc. Natl. Acad. Sci. 116, 23588–23593 (2019).
Google Scholar
Arcese, P., Sogge, M. K., Marr, A. B. & Patten, M. A. Song sparrow (Melospiza melodia), version 2.0. In The Birds of North America (ed. Rodewald, P. G.) (Cornell Lab of Ornithology, 2002).
Breton, J. et al. Ecotoxicology inside the gut: Impact of heavy metals on the mouse microbiome. BMC Pharmacol. Toxicol. 14, 62 (2013).
Google Scholar
Ruan, Y. et al. High doses of copper and mercury changed cecal microbiota in female mice. Biol. Trace Elem. Res. 189, 134–144 (2019).
Google Scholar
Lin, X. et al. Acute oral methylmercury exposure perturbs the gut microbiome and alters gut-brain axis related metabolites in rats. Ecotoxicol. Environ. Saf. 190, 110130 (2020).
Google Scholar
Grieves, L. A. et al. Food stress, but not experimental exposure to mercury, affects songbird preen oil composition. Ecotoxicology 29, 275–285 (2020).
Google Scholar
Christian, V. J., Miller, K. R. & Martindale, R. G. Food insecurity, malnutrition, and the microbiome. Curr. Nutr. Rep. 9, 356–360 (2020).
Google Scholar
Genton, L., Cani, P. D. & Schrenzel, J. Alterations of gut barrier and gut microbiota in food restriction, food deprivation and protein-energy wasting. Clin. Nutr. 34, 341–349 (2015).
Google Scholar
Noguera, J. C., Aira, M., Pérez-Losada, M., Domínguez, J. & Velando, A. Glucocorticoids modulate gastrointestinal microbiome in a wild bird. R. Soc. Open Sci. 5, 171743 (2018).
Google Scholar
Wienemann, T. et al. The bacterial microbiota in the ceca of Capercaillie (Tetrao urogallus) differs between wild and captive birds. Syst. Appl. Microbiol. 34, 542–551 (2011).
Google Scholar
Salgado-Flores, A., Tveit, A. T., Wright, A.-D., Pope, P. B. & Sundset, M. A. Characterization of the cecum microbiome from wild and captive rock ptarmigans indigenous to Arctic Norway. PLoS One 14, e0213503 (2019).
Google Scholar
Hird, S. M., Sánchez, C., Carstens, B. C. & Brumfield, R. T. Comparative gut microbiota of 59 neotropical bird species. Front. Microbiol. 6, 1403 (2015).
Google Scholar
Thomas, R. H. et al. Use of TLC-FID and GC-MS⁄FID to examine the effects of migratory state, diet and captivity on preen wax composition in White-throated Sparrows Zonotrichia albicollis. Ibis 152, 782–792 (2010).
Google Scholar
Xie, Y. et al. Effects of captivity and artificial breeding on microbiota in feces of the red-crowned crane (Grus japonensis). Sci. Rep. 6, 33350 (2016).
Google Scholar
San Juan, P. A., Castro, I. & Dhami, M. K. Captivity reduces diversity and shifts composition of the Brown Kiwi microbiome. Anim. Microbiome 3, 48 (2021).
Google Scholar
Wu, H., Wu, F.-T., Zhou, Q.-H. & Zhao, D.-P. Comparative analysis of gut microbiota in captive and wild oriental white storks: Implications for conservation biology. Front. Microbiol. 12, 649466 (2021).
Google Scholar
Rodríguez-Ruano, S. M. et al. The hoopoe’s uropygial gland hosts a bacterial community influenced by the living conditions of the bird. PLoS One 10, e0139734 (2015).
Google Scholar
Xenoulis, P. G. et al. Molecular characterization of the cloacal microbiota of wild and captive parrots. Vet. Microbiol. 146, 320–325 (2010).
Google Scholar
Kelly, T. R., Vinson, A. E., King, G. M. & Lattin, C. R. No guts about it: Captivity, but not neophobia phenotype, influences the cloacal microbiome of house sparrows (Passer domesticus). Integr. Org. Biol. 4, obac010 (2022).
Google Scholar
Grond, K., Sandercock, B. K., Jumpponen, A. & Zeglin, L. H. The avian gut microbiota: Community, physiology and function in wild birds. J. Avian Biol. 49, e01788 (2018).
Google Scholar
Videvall, E., Strandh, M., Engelbrecht, A., Cloete, S. & Cornwallis, C. K. Measuring the gut microbiome in birds: Comparison of faecal and cloacal sampling. Mol. Ecol. Resour. 18, 424–434 (2018).
Google Scholar
McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).
Google Scholar
Kohl, K. D., Skopec, M. M. & Dearing, M. D. Captivity results in disparate loss of gut microbial diversity in closely related hosts. Conserv. Physiol. 2, cou009 (2014).
Google Scholar
Martínez-Mota, R., Kohl, K. D., Orr, T. J. & Denise Dearing, M. Natural diets promote retention of the native gut microbiota in captive rodents. ISME J. 14, 67–78 (2020).
Google Scholar
Chatelain, M., Frantz, A., Gasparini, J. & Leclaire, S. Experimental exposure to trace metals affects plumage bacterial community in the feral pigeon. J. Avian Biol. 47, 521–529 (2016).
Google Scholar
Jacob, S. et al. Uropygial gland size and composition varies according to experimentally modified microbiome in great tits. BMC Evol. Biol. 14, 134 (2014).
Google Scholar
Jacob, J. & Ziswiler, V. The uropygial gland. In Avian Biology Vol. 6 (eds Farner, D. S. et al.) 199–324 (Academic Press, 1982).
Google Scholar
Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat. Rev. Microbiol. 16, 143 (2018).
Google Scholar
Egert, M. & Simmering, R. The microbiota of the human skin. Microbiota Hum. Body 902, 61–81 (2016).
Google Scholar
Grice, E. A. et al. A diversity profile of the human skin microbiota. Genome Res. 18, 1043–1050 (2008).
Google Scholar
Xu, B. et al. Molecular and biochemical characterization of a novel xylanase from Massilia sp. RBM26 isolated from the feces of Rhinopithecus bieti. J. Microbiol. Biotechnol. 26, 9–19 (2016).
Google Scholar
Rosenberg, E. The Prokaryotes (Springer, 2014).
Google Scholar
Tang, J., Huang, J., Qiao, Z., Wang, R. & Wang, G. Mucilaginibacter pedocola sp. Nov., isolated from a heavy-metal-contaminated paddy field. Int. J. Syst. Evol. Microbiol. 66, 4033–4038 (2016).
Google Scholar
Vasconcelos, A. L. et al. Mucilaginibacter sp. strain metal (loid) and antibiotic resistance isolated from estuarine soil contaminated mine tailing from the Fundão dam. Genes 13, 174 (2022).
Google Scholar
Dewi, G. & Kollanoor Johny, A. Lactobacillus in food animal production—A forerunner for clean label prospects in animal-derived products. Front. Sustain. Food Syst. 6, 831195 (2022).
Google Scholar
Dworkin, M. The Prokaryotes Proteobacteria: Alpha and Beta Subclasses (Springer Science & Business Media, 2006).
Google Scholar
Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: A call for the consideration of host-associated microbiota in wildlife management practices. Proc. R. Soc. B 286, 20182448 (2019).
Google Scholar
Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).
Google Scholar
Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T. G. & Cryan, J. F. Microbiota and the social brain. Science 366, eaar2016 (2019).
Google Scholar
Bottini, C. L., MacDougall-Shackleton, S. A., Branfireun, B. A. & Hobson, K. A. Feathers accurately reflect blood mercury at time of feather growth in a songbird. Sci. Total Environ. 775, 145739 (2021).
Google Scholar
Kelly, T. R., Bonner, S. J., MacDougall-Shackleton, S. A. & MacDougall-Shackleton, E. A. Exposing migratory sparrows to Plasmodium suggests costs of resistance, not necessarily of infection itself. J. Exp. Zool. Part Ecol. Integr. Physiol. 329, 5–14 (2018).
Google Scholar
Whittaker, D. J. & Hagelin, J. C. Female-based patterns and social function in avian chemical communication. J. Chem. Ecol. 47, 53–62 (2020).
Griffiths, R., Double, M. C., Orr, K. & Dawson, R. J. A DNA test to sex most birds. Mol. Ecol. 7, 1071–1075 (1998).
Google Scholar
Canadian Council on Animal Care (CCAC). Three Rs | Trois R :: About the Three Rs. https://3rs.ccac.ca/.
Lane, D. J. et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. 82, 6955–6959 (1985).
Google Scholar
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).
Google Scholar
Gloor, G. B. et al. Microbiome profiling by Illumina sequencing of combinatorial sequence-tagged PCR products. PLoS One 5, e15406 (2010).
Google Scholar
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
Google Scholar
Bian, G. et al. The gut microbiota of healthy aged Chinese is similar to that of the healthy young. Msphere 2, e00327-e417 (2017).
Google Scholar
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
Google Scholar
Stoler, N. & Nekrutenko, A. Sequencing error profiles of Illumina sequencing instruments. NAR Genom. Bioinform. 3, lqab019 (2021).
Google Scholar
Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).
Google Scholar
Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224 (2017).
Google Scholar
Aitchison, J. The Statistical Analysis of Compositional Data (Chapman and Hall, 1986).
Google Scholar
Gloor, G. B. & Reid, G. Compositional analysis: A valid approach to analyze microbiome high-throughput sequencing data. Can. J. Microbiol. 62, 692–703 (2016).
Google Scholar
Quinn, T. P., Erb, I., Richardson, M. F. & Crowley, T. M. Understanding sequencing data as compositions: An outlook and review. Bioinformatics 34, 2870–2878 (2018).
Google Scholar
Palarea-Albaladejo, J. & Martin-Fernandez, J. zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst. 143, 85–96 (2015).
Google Scholar
Fernandes, A. D. et al. Unifying the analysis of high-throughput sequencing datasets: Characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2, 15 (2014).
Google Scholar
Aitchison, J. & Greenacre, M. Biplots of compositional data. J. R. Stat. Soc. Ser. C Appl. Stat. 51, 375–392 (2002).
Google Scholar
Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 1–14 (2018).
Google Scholar
R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
Dixon, P. & Palmer, M. W. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).
Google Scholar
Fernandes, A. D., Macklaim, J. M., Linn, T. G., Reid, G. & Gloor, G. B. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS One 8, e67019 (2013).
Google Scholar
Nearing, J. T. et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat. Commun. 13, 342 (2022).
Google Scholar
Halsey, L. G., Curran-Everett, D., Vowler, S. L. & Drummond, G. B. The fickle P value generates irreproducible results. Nat. Methods 12, 179–185 (2015).
Google Scholar
Source: Ecology - nature.com