in

Using high-throughput sequencing to investigate the dietary composition of the Korean water deer (Hydropotes inermis argyropus): a spatiotemporal comparison

  • Schilling, A.-M. & Rössner, G. E. The (sleeping) beauty in the beast—a review on the water deer, Hydropotes inermis. Hystrix Ital. J. Mammal. 28, 121–133 (2017).

    Google Scholar 

  • Geist, V. Deer of the World: Their Evolution, Behaviour and Ecology (Stackpole Books, Pennsylvania, 1998).

    Google Scholar 

  • Cooke, A. Muntjac and Water Deer: Natural History, Environmental Impact and Management (Pelagic Publishing Ltd, UK, 2019).

    Book 

    Google Scholar 

  • Kim, B. J., Lee, B. K. & Kim, Y. J. Korean water deer (National Institute of Ecology, South Korea, 2016).

    Google Scholar 

  • Belyaev, D. A. & Jo, Y.-S. Northernmost finding and further information on water deer Hydropotes inermis in Primorskiy Krai, Russia. Mammalia 85, 71–73 (2021).

    Article 

    Google Scholar 

  • Harris, R. B. & Duckworth, J. W. Hydropotes inermis. The IUCN Red List of Threatened Species, e.T10329A22163569 (2015).

  • National Institute of Biological Resources. Harmful wildlife. https://species.nibr.go.kr/home/mainHome.do?cont_link=011&subMenu=011016&contCd=011016001 (2015).

  • Hofmann, R. R. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78, 443–457 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Guo, G. & Zhang, E. Diet of the Chinese water deer (Hydropotes inermis) in Zhoushan Archipelago, China. Acta Theriol. Sin. 25, 122–130 (2005).

    Google Scholar 

  • Kim, B. J., Lee, N. S. & Lee, S. D. Feeding diets of the Korean water deer (Hydropotes inermis argyropus) based on a 202 bp rbcL sequence analysis. Conserv. Genet. 12, 851–856 (2011).

    Article 

    Google Scholar 

  • Park, J.-E., Kim, B.-J., Oh, D.-H., Lee, H. & Lee, S.-D. Feeding habit analysis of the Korean water deer. Korean J. Environ. Ecol. 25, 836–845 (2011).

    Google Scholar 

  • Kim, J., Joo, S. & Park, S. Diet composition of Korean water deer (Hydropotes inermis argyropus) from the Han River Estuary Wetland in Korea using fecal DNA. Mammalia 85, 487–493 (2021).

    Article 

    Google Scholar 

  • Hofmann, R., Kock, R. A., Ludwig, J. & Axmacher, H. Seasonal changes in rumen papillary development and body condition in free ranging Chinese water deer (Hydropotes inermis). J. Zool. 216, 103–117 (1988).

    Article 

    Google Scholar 

  • Nielsen, J. M., Clare, E. L., Hayden, B., Brett, M. T. & Kratina, P. Diet tracing in ecology: Method comparison and selection. Methods Ecol. Evol. 9, 278–291 (2018).

    Article 

    Google Scholar 

  • Birnie-Gauvin, K., Peiman, K. S., Raubenheimer, D. & Cooke, S. J. Nutritional physiology and ecology of wildlife in a changing world. Conserv. Physiol. 5, cox030 (2017).

    Article 

    Google Scholar 

  • Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).

    Article 
    CAS 

    Google Scholar 

  • Glenn, T. C. Field guide to next-generation DNA sequencers. Mol. Ecol. Resour. 11, 759–769 (2011).

    Article 
    CAS 

    Google Scholar 

  • Nichols, R. V., Åkesson, M. & Kjellander, P. Diet assessment based on rumen contents: A comparison between DNA metabarcoding and macroscopy. PLoS ONE 11, e0157977 (2016).

    Article 

    Google Scholar 

  • Pompanon, F. et al. Who is eating what: diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).

    Article 
    CAS 

    Google Scholar 

  • Kumari, P. et al. DNA metabarcoding-based diet survey for the Eurasian otter (Lutra lutra): Development of a Eurasian otter-specific blocking oligonucleotide for 12S rRNA gene sequencing for vertebrates. PLoS ONE 14, e0226253 (2019).

    Article 
    CAS 

    Google Scholar 

  • Iwanowicz, D. D. et al. Metabarcoding of fecal samples to determine herbivore diets: A case study of the endangered Pacific pocket mouse. PLoS ONE 11, e0165366 (2016).

    Article 

    Google Scholar 

  • Berry, T. E. et al. DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea). Ecol. Evol. 7, 5435–5453 (2017).

    Article 

    Google Scholar 

  • Ford, M. J. et al. Estimation of a killer whale (Orcinus orca) population’s diet using sequencing analysis of DNA from feces. PLoS ONE 11, e0144956 (2016).

    Article 

    Google Scholar 

  • Ando, H. et al. Diet analysis by next-generation sequencing indicates the frequent consumption of introduced plants by the critically endangered red-headed wood pigeon (Columba janthina nitens) in oceanic island habitats. Ecol. Evol. 3, 4057–4069 (2013).

    Article 

    Google Scholar 

  • Kim, E.-K. Behavioral ecology, habitat evaluation and genetic characteristics of water deer (Hydropotes inermis) in Korea. Ph.D. thesis. Kangwon National University (2011).

  • Park, J.-E., Kim, B.-J. & Lee, S.-D. A study of potential of diet analysis in the Korean water deer (Hydropotes inermis argyropus) using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Korean J. Environ. Ecol. 24, 318–324 (2010).

    Google Scholar 

  • Hollingsworth, P. M. Refining the DNA barcode for land plants. Proc. Natl. Acad. Sci. USA 108, 19451–19452 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, D.-Z. et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. USA 108, 19641–19646 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Park, E. & Nam, M. Changes in land cover and the cultivation area of ginseng in the Civilian Control Zone -Paju City and Yeoncheon County-. Korean J. Environ. Ecol. 27, 507–515 (2013).

    Google Scholar 

  • Cheng, T. et al. Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Mol. Ecol. Resour. 16, 138–149 (2016).

    Article 
    CAS 

    Google Scholar 

  • Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    Article 
    CAS 

    Google Scholar 

  • Ankenbrand, M. J., Keller, A., Wolf, M., Schultz, J. & Förster, F. ITS2 database V: Twice as much. Mol. Biol. Evol. 32, 3030–3032 (2015).

    Article 
    CAS 

    Google Scholar 

  • Sickel, W. et al. Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach. BMC Ecol. 15, 20 (2015).

    Article 

    Google Scholar 

  • Edgar, R. C. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences. PeerJ 6, e4652 (2018).

    Article 

    Google Scholar 

  • Oksanen, J. et al. vegan: Community ecology package v 2.5–7 (R Foundation, Vienna, Austria, 2020).

    Google Scholar 

  • Hsieh, T., Ma, K. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Article 

    Google Scholar 

  • Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 

  • De Cáceres, M. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574 (2009).

    Article 

    Google Scholar 

  • Yan, L. ggvenn: Draw venn diagram by ‘ggplot2’ v. 0.1.8 (R Foundation, Vienna, Austria, 2021).

  • Choi, D.-Y. et al. Flora of province Gyonggi-do. Bull. Seoul Nat’l Univ. Arbor. 21, 25–76 (2001).

    Google Scholar 

  • Ko, S. & Shin, Y. Flora of middle part in Gyeonggi Province. Korean J. Plant Res. 22, 49–70 (2009).

    Google Scholar 

  • Lee, S.-K., Ryu, Y. & Lee, E. J. Endozoochorous seed dispersal by Korean water deer (Hydropotes inermis argyropus) in Taehwa Research Forest, South Korea. Glob. Ecol. Conserv. 40, e02325 (2022).

    Article 

    Google Scholar 

  • Kim, K.-H. & Kang, S.-H. Flora of western civilian control zone (CCZ) in Korea. Korean J. Plant Res. 32, 565–588 (2019).

    Google Scholar 

  • Gyeonggi Tourism Organization. Pyeonghwa-Nuri Trail ecological resource survey. (Paju City, Gyeonggi Province, Korea, 2018).

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis 2nd edn. (Springer, New York, 2016).

    Book 
    MATH 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing (R Foundation, Vienna, Austria, 2020).

  • Pertoldi, C. et al. Comparing DNA metabarcoding with faecal analysis for diet determination of the Eurasian otter (Lutra lutra) in Vejlerne. Denmark. Mammal. Res. 66, 115–122 (2021).

    Article 

    Google Scholar 

  • Lee, B. Morphological, ecological and DNA taxonomic characteristics of Chinese water deer (Hydropotes inermis Swinhoe). Ph.D. thesis. Chungbuk National University (2003).

  • Wilmshurst, J. F., Fryxell, J. M. & Hudsonb, R. J. Forage quality and patch choice by wapiti (Cervus elaphus). Behav. Ecol. 6, 209–217 (1995).

    Article 

    Google Scholar 

  • Langvatn, R. & Hanley, T. A. Feeding-patch choice by red deer in relation to foraging efficiency. Oecologia 95, 164–170 (1993).

    Article 
    ADS 

    Google Scholar 

  • Gray, P. B. & Servello, F. A. Energy intake relationships for white-tailed deer on winter browse diets. J. Wildl. Manag. 59, 147–152 (1995).

    Article 

    Google Scholar 

  • Brown, D. T. & Doucet, G. J. Temporal changes in winter diet selection by white-tailed deer in a northern deer yard. J. Wildl. Manag. 55, 361–376 (1991).

    Article 

    Google Scholar 

  • Takahashi, H. & Kaji, K. Fallen leaves and unpalatable plants as alternative foods for sika deer under food limitation. Ecol. Res. 16, 257–262 (2001).

    Article 

    Google Scholar 

  • Bee, J. N. et al. Spatio-temporal feeding selection of red deer in a mountainous landscape. Austral Ecol. 35, 752–764 (2010).

    Article 

    Google Scholar 

  • Gebert, C. & Verheyden-Tixier, H. Variations of diet composition of red deer (Cervus elaphus L.) in Europe. Mammal. Rev. 31, 189–201 (2001).

    Article 

    Google Scholar 

  • Cornelis, J., Casaer, J. & Hermy, M. Impact of season, habitat and research techniques on diet composition of roe deer (Capreolus capreolus): a review. J. Zool. 248, 195–207 (1999).

    Article 

    Google Scholar 

  • Kim, B. J. & Lee, S.-D. Home range study of the Korean water deer (Hydropotes inermis agyropus) using radio and GPS tracking in South Korea: Comparison of daily and seasonal habitat use pattern. J. Ecol. Field Biol. 34, 365–370 (2011).

    Google Scholar 

  • Beier, P. Sex differences in quality of white-tailed deer diets. J. Mammal. 68, 323–329 (1987).

    Article 

    Google Scholar 

  • Staines, B. W., Crisp, J. M. & Parish, T. Differences in the quality of food eaten by red deer (Cervus elaphus) stags and hinds in winter. J. Appl. Ecol. 19, 65–77 (1982).

    Article 

    Google Scholar 

  • Koga, T. & Ono, Y. Sexual differences in foraging behavior of sika deer, Cervus nippon. J. Mammal. 75, 129–135 (1994).

    Article 

    Google Scholar 

  • Han, S.-H., Lee, S.-S., Cho, I.-C., Oh, M.-Y. & Oh, H.-S. Species identification and sex determination of Korean water deer (Hydropotes inermis argyropus) by duplex PCR. J. Appl. Anim. Res. 35, 61–66 (2009).

    Article 
    CAS 

    Google Scholar 

  • You, Z. et al. Seasonal variations in the composition and diversity of gut microbiota in white-lipped deer (Cervus albirostris). PeerJ 10, e13753 (2022).

    Article 

    Google Scholar 

  • Zhao, W. et al. Metagenomics analysis of the gut microbiome in healthy and bacterial pneumonia forest musk deer. Gene Genom. 43, 43–53 (2021).

    Article 
    CAS 

    Google Scholar 

  • Amato, K. R. et al. Gut microbiome, diet, and conservation of endangered langurs in Sri Lanka. Biotropica 52, 981–990 (2020).

    Article 

    Google Scholar 

  • Stumpf, R. M. et al. Microbiomes, metagenomics, and primate conservation: New strategies, tools, and applications. Biol. Conserv. 199, 56–66 (2016).

    Article 

    Google Scholar 

  • Redford, K. H., Segre, J. A., Salafsky, N., del Rio, C. M. & McAloose, D. Conservation and the microbiome. Conserv. Biol. 26, 195–197 (2012).

    Article 

    Google Scholar 

  • Deagle, B. E. et al. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?. Mol. Ecol. 28, 391–406 (2019).

    Article 

    Google Scholar 

  • Corse, E. et al. A from-benchtop-to-desktop workflow for validating HTS data and for taxonomic identification in diet metabarcoding studies. Mol. Ecol. Resour. 17, e146–e159 (2017).

    Article 
    CAS 

    Google Scholar 

  • Alberdi, A. et al. Promises and pitfalls of using high-throughput sequencing for diet analysis. Mol. Ecol. Resour. 19, 327–348 (2019).

    Article 

    Google Scholar 

  • Nakahara, F. et al. The applicability of DNA barcoding for dietary analysis of sika deer. DNA Barcodes 3, 200–206 (2015).

    Article 

    Google Scholar 

  • Thomas, A. C., Jarman, S. N., Haman, K. H., Trites, A. W. & Deagle, B. E. Improving accuracy of DNA diet estimates using food tissue control materials and an evaluation of proxies for digestion bias. Mol. Ecol. 23, 3706–3718 (2014).

    Article 
    CAS 

    Google Scholar 

  • Deagle, B. E., Eveson, J. P. & Jarman, S. N. Quantification of damage in DNA recovered from highly degraded samples–a case study on DNA in faeces. Front. Zool. 3, 11 (2006).

    Article 

    Google Scholar 

  • Coissac, E., Riaz, T. & Puillandre, N. Bioinformatic challenges for DNA metabarcoding of plants and animals. Mol. Ecol. 21, 1834–1847 (2012).

    Article 
    CAS 

    Google Scholar 

  • Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Clare, E. L. Molecular detection of trophic interactions: emerging trends, distinct advantages, significant considerations and conservation applications. Evol. Appl. 7, 1144–1157 (2014).

    Article 

    Google Scholar 

  • Ramirez, R., Quintanilla, J. & Aranda, J. White-tailed deer food habits in northeastern Mexico. Small Rumin. Res. 25, 141–146 (1997).

    Article 

    Google Scholar 

  • Anouk Simard, M., Côté, S. D., Weladji, R. B. & Huot, J. Feedback effects of chronic browsing on life-history traits of a large herbivore. J. Anim. Ecol. 77, 678–686 (2008).

    Article 
    CAS 

    Google Scholar 

  • Putman, R. J. & Staines, B. W. Supplementary winter feeding of wild red deer Cervus elaphus in Europe and North America: justifications, feeding practice and effectiveness. Mammal Rev. 34, 285–306 (2004).

    Article 

    Google Scholar 

  • Milner, J. M., Van Beest, F. M., Schmidt, K. T., Brook, R. K. & Storaas, T. To feed or not to feed? Evidence of the intended and unintended effects of feeding wild ungulates. J. Wildl. Manag. 78, 1322–1334 (2014).

    Article 

    Google Scholar 

  • Carpio, A. J., Apollonio, M. & Acevedo, P. Wild ungulate overabundance in Europe: contexts, causes, monitoring and management recommendations. Mammal Rev. 51, 95–108 (2021).

    Article 

    Google Scholar 

  • Cappa, F., Lombardini, M. & Meriggi, A. Influence of seasonality, environmental and anthropic factors on crop damage by wild boar Sus scrofa. Folia Zool. 68, 261–268 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Manufacturing a cleaner future

    MIT community in 2022: A year in review