IPCC. Summary for Policymakers. In (Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield, eds) Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In Press (2018).
Malhi, Y. et al. Climate change and ecosystems: Threats, opportunities and solutions. Philos. Trans. R. Soc. B Biol. Sci. 375(1794), 20190104. https://doi.org/10.1098/rstb.2019.0104 (2020).
Google Scholar
McElwee, P. Climate change and biodiversity loss. Curr. Hist. 120(829), 295–300. https://doi.org/10.1525/curh.2021.120.829.295 (2021).
Google Scholar
Dickinson, M. G., Orme, C. D. L., Suttle, K. B. & Mace, G. M. Separating sensitivity from exposure in assessing extinction risk from climate change. Sci. Rep. 4(1), 6898. https://doi.org/10.1038/srep06898 (2015).
Google Scholar
UNFCCC (United Nations Framework Convention on Climate Change). Global Warming Potentials http://unfccc.int/ghg_data/items/3825.php (2014).
BelhadjSlimen, I., Chniter, M., Najar, T. & Ghram, A. Meta-analysis of some physiologic, metabolic and oxidative responses of sheep exposed to environmental heat stress. Livestock Sci. 229, 179–187. https://doi.org/10.1016/j.livsci.2019.09.026 (2019).
Google Scholar
Wojtas, K., Cwynar, P. & Kołacz, R. Effect of thermal stress on physiological and blood parameters in merino sheep. Bull. Vet. Inst. Pulawy 58(2), 283–288. https://doi.org/10.2478/bvip-2014-0043 (2014).
Google Scholar
Gavojdian, D., Cziszter, L. T., Budai, C. & Kusza, S. Effects of behavioral reactivity on production and reproduction traits in Dorper sheep breed. J. Vet. Behav. 10(4), 365–368. https://doi.org/10.1016/j.jveb.2015.03.012 (2015).
Google Scholar
Mehaba, N., Coloma-Garcia, W., Such, X., Caja, G. & Salama, A. A. K. Heat stress affects some physiological and productive variables and alters metabolism in dairy ewes. J. Dairy Sci. 104(1), 1099–1110. https://doi.org/10.3168/jds.2020-18943 (2021).
Google Scholar
Ramón, M., Díaz, C., Pérez-Guzman, M. D. & Carabaño, M. J. Effect of exposure to adverse climatic conditions on production in Manchega dairy sheep. J. Dairy Sci. 99(7), 5764–6577. https://doi.org/10.3168/jds.2016-10909 (2016).
Google Scholar
Mahjoubi, E. et al. The effect of cyclical and severe heat stress on growth performance and metabolism in Afshari lambs1. J. Anim. Sci. 93(4), 1632–1640. https://doi.org/10.2527/jas.2014-8641 (2015).
Google Scholar
dos Hamilton, T. R. S. et al. Evaluation of lasting effects of heat stress on sperm profile and oxidative status of ram semen and epididymal sperm. Oxid. Med. Cell. Longev. 1–12, 2016. https://doi.org/10.1155/2016/1687657 (2016).
Google Scholar
Romo-Barron, C. B. et al. Impact of heat stress on the reproductive performance and physiology of ewes: A systematic review and meta-analyses. Int. J. Biometeorol. 63(7), 949–962. https://doi.org/10.1007/s00484-019-01707-z (2019).
Google Scholar
Caroprese, M. et al. Glucocorticoid effects on sheep peripheral blood mononuclear cell proliferation and cytokine production under in vitro hyperthermia. J. Dairy Sci. 101(9), 8544–8551. https://doi.org/10.3168/jds.2018-14471 (2018).
Google Scholar
Marcone, G., Kaart, T., Piirsalu, P. & Arney, D. R. Panting scores as a measure of heat stress evaluation in sheep with access and with no access to shade. Appl. Anim. Behav. Sci. 240, 105350. https://doi.org/10.1016/j.applanim.2021.105350 (2021).
Google Scholar
Van Wettere, W. H. E. J. et al. Review of the impact of heat stress on reproductive performance of sheep. J. Anim. Sci. Biotechnol. 12(1), 26. https://doi.org/10.1186/s40104-020-00537-z (2021).
Google Scholar
Belhadj Slimen, I., Najar, T., Ghram, A. & Abdrrabba, M. Heat stress effects on livestock: Molecular, cellular and metabolic aspects, a review. J. Anim. Physiol. Anim. Nutr. 100(3), 401–412. https://doi.org/10.1111/jpn.12379 (2016).
Google Scholar
Guo, Z., Gao, S., Ouyang, J., Ma, L. & Bu, D. Impacts of heat stress-induced oxidative stress on the milk protein biosynthesis of dairy cows. Animals 11(3), 726. https://doi.org/10.3390/ani11030726 (2021).
Google Scholar
Liu, Z. et al. Heat stress in dairy cattle alters lipid composition of milk. Sci. Rep. 7(1), 961. https://doi.org/10.1038/s41598-017-01120-9 (2017).
Google Scholar
Krishnan, G. et al. Mitigation of the heat stress impact in Livestock reproduction. In Theriogenology (InTech, 2017).
Robertson, S. & Friend, M. Strategies to ameliorate heat stress effects on sheep reproduction. In Climate Change and Livestock Production: Recent Advances and Future Perspectives 175–183 (Springer, 2021). https://doi.org/10.1007/978-981-16-9836-1_15.
Google Scholar
Sawyer, G. & Narayan, E. J. A review on the influence of climate change on sheep reproduction. In Comparative Endocrinology of Animals (Intech Open, 2019). https://doi.org/10.5772/intechopen.86799.
Google Scholar
Maurya, V. P., Sejian, V., Kumar, D. & Naqvi, S. M. K. Biological ability of Malpura rams to counter heat stress challenges and its consequences on production performance in a semi-arid tropical environment. Biol. Rhythm. Res. 49(3), 479–493. https://doi.org/10.1080/09291016.2017.1381451 (2018).
Google Scholar
Shahat, A. M., Rizzoto, G. & Kastelic, J. P. Amelioration of heat stress-induced damage to testes and sperm quality. Theriogenology 158, 84–96. https://doi.org/10.1016/j.theriogenology.2020.08.034 (2020).
Google Scholar
Singh, K. M. et al. Association of heat stress protein 90 and 70 gene polymorphism with adaptability traits in Indian sheep (Ovis aries). Cell Stress Chaperones 22(5), 675–684. https://doi.org/10.1007/s12192-017-0770-4 (2017).
Google Scholar
Kim, E.-S. et al. Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity 116(3), 255–264. https://doi.org/10.1038/hdy.2015.94 (2016).
Google Scholar
do Paim, T. P., Alves dos Santos, C., de Faria, D. A., Paiva, S. R. & McManus, C. Genomic selection signatures in Brazilian sheep breeds reared in a tropical environment. Livestock Sci. 258, 104865. https://doi.org/10.1016/j.livsci.2022.104865 (2022).
Google Scholar
Kusza, S. et al. Kompetitive Allele Specific PCR (KASPTM) genotyping of 48 polymorphisms at different caprine loci in French Alpine and Saanen goat breeds and their association with milk composition. PeerJ 6, e4416. https://doi.org/10.7717/peerj.4416 (2018).
Google Scholar
Zhang, Y. et al. Technical note: Development and application of KASP assays for rapid screening of 8 genetic defects in Holstein cattle. J. Dairy Sci. 103(1), 619–624. https://doi.org/10.3168/jds.2019-16345 (2020).
Google Scholar
Chaari, A. Molecular chaperones biochemistry and role in neurodegenerative diseases. Int. J. Biol. Macromol. 131, 396–411. https://doi.org/10.1016/j.ijbiomac.2019.02.148 (2019).
Google Scholar
Tripathy, K., Sodhi, M., Kataria, R. S., Chopra, M. & Mukesh, M. In silico analysis of HSP70 gene family in bovine genome. Biochem. Genet. 59(1), 134–158. https://doi.org/10.1007/s10528-020-09994-7 (2021).
Google Scholar
Rehman, S. et al. Genomic identification, evolution and sequence analysis of the heat-shock protein gene family in buffalo. Genes 11(11), 1388. https://doi.org/10.3390/genes11111388 (2020).
Google Scholar
Huo, C. et al. Chronic heat stress negatively affects the immune functions of both spleens and intestinal mucosal system in pigs through the inhibition of apoptosis. Microbial Pathog. 136, 103672. https://doi.org/10.1016/j.micpath.2019.103672 (2019).
Google Scholar
Morange, M. HSFs in development. In Molecular Chaperones in Health and Disease 153–169 (Springer, 2006). https://doi.org/10.1007/3-540-29717-0_7.
Google Scholar
Hoter, A., El-Sabban, M. & Naim, H. The HSP90 family: Structure, regulation, function, and implications in health and disease. Int. J. Mol. Sci. 19(9), 2560. https://doi.org/10.3390/ijms19092560 (2018).
Google Scholar
Vanselow, J., Vernunft, A., Koczan, D., Spitschak, M. & Kuhla, B. Exposure of lactating dairy cows to acute pre-ovulatory heat stress affects granulosa cell-specific gene expression profiles in dominant follicles. PLoS One 11(8), e0160600. https://doi.org/10.1371/journal.pone.0160600 (2016).
Google Scholar
Joy, A. et al. Resilience of small ruminants to climate change and increased environmental temperature: A review. Animals 10(5), 86. https://doi.org/10.3390/ani10050867 (2020).
Google Scholar
Saravanan, K. A. et al. Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics 113(3), 955–963. https://doi.org/10.1016/j.ygeno.2021.02.009 (2021).
Google Scholar
Singh, A. K., Upadhyay, R. C., Malakar, D., Kumar, S. & Singh, S. V. Effect of thermal stress on HSP70 expression in dermal fibroblast of zebu (Tharparkar) and crossbred (Karan-Fries) cattle. J. Therm. Biol 43, 46–53. https://doi.org/10.1016/j.jtherbio.2014.04.006 (2014).
Google Scholar
Verma, N., Gupta, I. D., Verma, A., Kumar, R. & Das, R. Novel SNPs in HSPB8 gene and their association with heat tolerance traits in Sahiwal indigenous cattle. Trop. Anim. Health Prod. 48(1), 175–180. https://doi.org/10.1007/s11250-015-0938-9 (2016).
Google Scholar
Al-Thuwaini, T. M., Al-Shuhaib, M. B. S. & Hussein, Z. M. A novel T177P missense variant in the HSPA8 gene associated with the low tolerance of Awassi sheep to heat stress. Trop. Anim. Health Prod. 52(5), 2405–2416. https://doi.org/10.1007/s11250-020-02267-w (2020).
Google Scholar
Onasanya, G. O. et al. Heterozygous single-nucleotide polymorphism genotypes at heat shock protein 70 gene potentially influence thermo-tolerance among four Zebu breeds of Nigeria. Front. Genet. https://doi.org/10.3389/fgene.2021.642213 (2021).
Google Scholar
Pascal, C. Researches regarding quality of sheep skins obtained from Karakul from Botosani sheep. Biotechnol. Anim. Husband. 27(3), 1123–1130. https://doi.org/10.2298/BAH1103123P (2011).
Google Scholar
Kevorkian, S. E. M., Zǎuleţ, M., Manea, M. A., Georgescu, S. E. & Costache, M. Analysis of the ORF region of the prion protein gene in the Botosani Karakul sheep breed from Romania. Turk. J. Vet. Anim. Sci. 35(2), 105–109. https://doi.org/10.3906/vet-0909-124 (2011).
Google Scholar
Kusza, S. et al. Mitochondrial DNA variability in Gyimesi Racka and Turcana sheep breeds. Acta Biochim. Pol. 62(2), 273–280. https://doi.org/10.18388/abp.2015_978 (2015).
Google Scholar
Gavojdian, D. et al. Effects of using indigenous heritage sheep breeds in organic and low-input production systems on production efficiency and animal welfare in Romania. Landbauforschung Volkenrode 66(4), 290–297. https://doi.org/10.3220/LBF1483607712000 (2016).
Google Scholar
Gavojdian, D. et al. Reproduction efficiency and health traits in Dorper, White Dorper, and Tsigai sheep breeds under temperate European conditions. Asian Australas. J. Anim. Sci. 28(4), 599–603. https://doi.org/10.5713/ajas.14.0659 (2015).
Google Scholar
Kusza, S. et al. The genetic variability of Hungarian Tsigai sheep. Archiv Tierzuch 53(3), 309–317 (2010).
Kusza, S. et al. Study of genetic differences among Slovak Tsigai populations using microsatellite markers. Czeh J. Anim. Sci. 54(10), 468–474. https://doi.org/10.17221/1670-CJAS (2009).
Google Scholar
Marcos-Carcavilla, A. et al. Polymorphisms in the HSP90AA1 5′ flanking region are associated with scrapie incubation period in sheep. Cell Stress Chaperones 15(4), 343–349. https://doi.org/10.1007/s12192-009-0149-2 (2010).
Google Scholar
Salces-Ortiz, J. et al. Looking for adaptive footprints in the HSP90AA1 ovine gene. BMC Evol. Biol. 15(1), 7. https://doi.org/10.1186/s12862-015-0280-x (2015).
Google Scholar
Toscano, J. H. B. et al. Innate immune responses associated with resistance against Haemonchus contortus in Morada Nova Sheep. J. Immunol. Res. 2019, 1–10. https://doi.org/10.1155/2019/3562672 (2019).
Google Scholar
Estrada-Reyes, Z. M. et al. Signatures of selection for resistance to Haemonchus contortus in sheep and goats. BMC Genom. 20(1), 735. https://doi.org/10.1186/s12864-019-6150-y (2019).
Google Scholar
Caroprese, M., Bradford, B. J. & Rhoads, R. P. Editorial: Impact of climate change on immune responses in agricultural animals. Front. Vet. Sci. https://doi.org/10.3389/fvets.2021.732203 (2021).
Google Scholar
FAO/IAEA. Agriculture biotechnology laboratory—handbook of laboratory exercises. Seibersdorf: IAEA Laboratories, 18 (2004).
Zsolnai, A. & Orbán, L. Accelerated separation of random complex DNA patterns in gels: Comparing the performance of discontinuous and continuous buffers. Electrophoresis 20(7), 1462–1468. https://doi.org/10.1002/(SICI)1522-2683(19990601)20:7%3c1462::AID-ELPS1462%3e3.0.CO;2-0 (1999).
Google Scholar
Cavalcanti, L. C. G. et al. Genetic characterization of coat color genes in Brazilian Crioula sheep from a conservation nucleus. Pesq. Agrop. Brasil. 52(8), 615–622. https://doi.org/10.1590/s0100-204×2017000800007 (2017).
Google Scholar
Li, Y. et al. Heat stress-responsive transcriptome analysis in the liver tissue of Hu sheep. Genes 10(5), 395. https://doi.org/10.3390/genes10050395 (2019).
Google Scholar
Younis, F. Expression pattern of heat shock protein genes in sheep. Mansoura Vet. Med. J. 21(1), 1–5. https://doi.org/10.35943/mvmj.2020.21.001 (2020).
Google Scholar
Yeh F. C., Boyle R., Yang R. C., Ye Z., Mao J. X. & Yeh D. POPGENE version 1.32. Computer program and documentation distributed by the author. http://www.ualberta.ca/∼fyeh/popgene.html (1999).
Lê, S., Josse, J. & Husson, F. FactoMineR: A package for multivariate analysis. J. Stat. Softw. 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01 (2008).
Google Scholar
Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer. https://ggplot2.tidyverse.org (2016) (ISBN 978-3-319-24277-4).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).
Source: Ecology - nature.com