in

Variability in frost occurrence under climate change and consequent risk of damage to trees of western Quebec, Canada

  • Kollas, C., Körner, C. & Randin, C. F. Spring frost and growing season length co-control the cold range limits of broad-leaved trees. J. Biogeogr. 41, 773–783 (2014).

    Article 

    Google Scholar 

  • Lenz, A., Hoch, G., Körner, C. & Vitasse, Y. Convergence of leaf-out towards minimum risk of freezing damage in temperate trees. Funct. Ecol. 30, 1480–1490 (2016).

    Article 

    Google Scholar 

  • Körner, C. et al. Where, why and how? Explaining the low-temperature range limits of temperate tree species. J. Ecol. 104, 1076–1088 (2016).

    Article 
    CAS 

    Google Scholar 

  • Körner, C. Plant adaptation to cold climates. F1000Research 5, 2769 (2016).

    Article 

    Google Scholar 

  • Vitra, A., Lenz, A. & Vitasse, Y. Frost hardening and dehardening potential intemperate trees from winter to budburst. New Phytol. 216, 113–123 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Dy, G. & Payette, S. Frost hollows of the boreal forest as extreme environments for black spruce tree growth. Can. J. For. Res. 37, 492–504 (2007).

    Article 

    Google Scholar 

  • Marquis, B., Bergeron, Y., Simard, M. & Tremblay, F. Growing-season frost is a better predictor of tree growth than mean annual temperature in boreal mixedwood forest plantations. Glob. Change Biol. 26, 6537–6554 (2020).

    ADS 
    Article 

    Google Scholar 

  • Hufkens, K. et al. Ecological impacts of a widespread frost event following early spring leaf-out. Glob. Change Biol. 18, 2365–2377 (2012).

    ADS 
    Article 

    Google Scholar 

  • Guo, X., Khare, S., Silvestro, R. & Rossi, S. Minimum spring temperatures at the provenance origin drive leaf phenology in sugar maple populations. Tree Physiol. 40, 1639–1647 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Marquis, B., Bergeron, Y., Simard, M. & Tremblay, F. Probability of spring frosts, not growing degree-days, drives onset of spruce bud burst in plantations at the boreal-temperate forest ecotone. Front. Plant Sci. 11, 1031 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mahony, C. R., Cannon, A. J., Wang, T. & Aitken, S. N. A closer look at novel climates: New methods and insights at continental to landscape scales. Glob. Change Biol. 23, 3934–3955 (2017).

    ADS 
    Article 

    Google Scholar 

  • Roman-Palacios, C. & Wiens, J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl. Acad. Sci. U.S.A. 117, 4211–4217 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chuine, I. A unified model for budburst of trees. J. Theor. Biol. 207, 337–347 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Horvath, P. et al. Improving the representation of high-latitude vegetation distribution in dynamic global vegetation models. Biogeosciences 18, 95–112 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wullschleger, S. D. et al. Plant functional types in Earth system models: Past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems. Ann. Bot. Lond. 114, 1–16 (2014).

    CAS 
    Article 

    Google Scholar 

  • Deser, C. et al. Insights from earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change 10, 277–286 (2020).

    ADS 
    Article 

    Google Scholar 

  • Machete, R. L. & Smith, L. A. Demonstrating the value of larger ensembles in forecasting physical systems. Tellus A Dyn. Meteorol. Oceanogr. 68, 28393 (2016).

    Article 

    Google Scholar 

  • Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: The role of internal variability. Clim. Dyn. 38, 527–546 (2012).

    Article 

    Google Scholar 

  • Leduc, M. et al. The ClimEx project: A 50-member ensemble of climate change projections at 12-km resolution over Europe and Northeastern North America with the Canadian regional climate model (CRM5). J. Appl. Meteor. Climatol. 58, 663–693 (2019).

    ADS 
    Article 

    Google Scholar 

  • Innocenti, S., Mailhot, A., Leduc, M., Cannon, A. J. & Frigon, A. Projected changes in the probability distributions, seasonality, and spatiotemporal scaling of daily and subdaily extreme precipitation simulated by a 50-member ensemble over Northeastern North America. J. Geophys. Res. Atmos. 124, 19 (2019).

    Article 

    Google Scholar 

  • Kay, J. E. et al. The community earth system model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteor. Soc. 96, 1333–1349 (2015).

    ADS 
    Article 

    Google Scholar 

  • Thompson, D. W. J., Barnes, E. A., Deser, C., Foust, W. E. & Phillips, A. S. Quantifying the role of internal climate variability in future climate trends. J. Clim. 28, 6443–6456 (2015).

    ADS 
    Article 

    Google Scholar 

  • Kumar, D. & Ganguly, A. R. Intercomparison of model response and internal variability across climate model ensembles. Clim. Dyn. 51, 207–219 (2018).

    Article 

    Google Scholar 

  • Gu, L. et al. The contribution of internal climate variability to climate change impacts on droughts. Sci. Total Environ. 684, 229–246 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mittermeier, M., Braun, M., Hofstätter, M., Wang, Y. & Ludwig, R. Detecting climate change effects on Vb cyclones in a 50-member single-model ensemble using machine learning. Geophys. Res. Lett. 46, 14653–14661 (2019).

    ADS 
    Article 

    Google Scholar 

  • Fyfe, J. C. et al. Large near-term projected snowpack loss over the western United States. Nat. Commun. 8, 14996 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

    MATH 
    Book 

    Google Scholar 

  • Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9, 426 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Zohner, C. M. et al. Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proc. Natl. Acad. Sci. U.S.A. 117, 12192–12200 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ma, Q., Huang, J.-G., Hänninen, H. & Berninger, F. Divergent trends in the risk of spring frost damage to trees in Europe with recent warming. Glob. Change Biol. 25, 351–360 (2018).

    ADS 
    Article 

    Google Scholar 

  • Cannell, M. G. R. & Smith, R. I. Climatic warming, spring budburst and forest damage on trees. J. Appl. Ecol. 23, 177–191 (1986).

    Article 

    Google Scholar 

  • Morin, X. & Chuine, I. Will tree species experience increased frost damage due to climate change because of changes in leaf phenology? Can. J. For. Res. 44, 1555–1565 (2014).

    Article 

    Google Scholar 

  • Fu, Y. et al. Progress in plant phenology modeling under global climate change. Sci. China Earth Sci. 63, 1237 (2020).

    ADS 
    Article 

    Google Scholar 

  • Gill, A. L. et al. Changes in autumn senescence in northern hemisphere deciduous trees: A meta-analysis of autumn phenology studies. Ann Bot. 116, 875–888 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Perrin, M., Rossi, S. & Isabel, S. N. Synchronisms between bud and cambium phenology in black spruce: Early-flushing provenances exhibit early xylem formation. Tree Physiol. 37, 593–603 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Guo, X. et al. Common-garden experiment reveals clinical trends of bud phenology in black spruce populations from a latitudinal gradient in the boreal forest. J. Ecol. https://doi.org/10.1111/1365-2745.13582 (2021).

    Article 

    Google Scholar 

  • Usmani, A. et al. Ecotypic differentiation of black spruce populations: Temperature triggers bud burst but not bud set. Trees 34, 1313–1321 (2020).

    Article 

    Google Scholar 

  • Buttò, V., Rozenberg, P., Deslauriers, A., Rossi, S. & Morin, H. Environmental and developmental factors driving xylem anatomy and micro-density in black spruce. New Phytol. 230, 957. https://doi.org/10.1111/nph.17223 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Keenan, T. F. & Richardson, A. D. The timing of autumn senescence is affected by the timing of spring phenology: Implications for predictive models. Glob. Change Biol. 21, 2634–2641 (2015).

    ADS 
    Article 

    Google Scholar 

  • Zani, D., Crowther, T. W., Mo, L., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Silvestro, R. et al. From phenology to forest management: Ecotypes selection can avoid early or late frosts, but not both. For. Ecol. Manage. 436, 21–26 (2019).

    Article 

    Google Scholar 

  • D’Orangeville, L. et al. Beneficial effects of climate warming on boreal tree growth may be transitory. Nat. Commun. 9, 3213 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Menezes-Silva, P. E. et al. Different ways to die in a changing world: Consequences of climate change for tree species performance and survival through an ecophysiological perspective. Ecol. Evol. 9, 11979–11999 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schwarz, J. A., Saha, S. & Bauhus, J. Potential of forest thinning to mitigate drought stress: A meta-analysis. For. Ecol. Manage. 380, 261–273 (2016).

    Article 

    Google Scholar 

  • Marquis, B., Bergeron, Y., Simard, M. & Tremblay, F. Disentangling the effect of topography and microtopography on near-ground growing-season frosts at the boreal-temperate forest ecotone (Québec, Canada). New For. https://doi.org/10.1007/s11056-021-09840-7 (2021).

    Article 

    Google Scholar 

  • Marquis, B. growth stagnation of planted spruce in boreal mixedwoods: Importance of landscape, microsite, and growing-season frosts. For. Ecol. Manage. 479, 118533 (2021).

    Article 

    Google Scholar 

  • Pedlar, J. et al. The implementation of assisted migration in Canadian forests. For. Chron. 87, 766–777 (2011).

    Article 

    Google Scholar 

  • Marris, E. Planting the forest for the future. Nature 459, 906–908 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Klisz, M. et al. Limitations at the limit? Diminishing of genetic effects in Norway spruce provenance trials. Front. Plant Sci. 10, 306 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pedlar, J. H., McKenney, D. W. & Lu, P. Critical seed transfer distances for selected tree species in eastern North America. J. Ecol. https://doi.org/10.1111/1365-2745.13605 (2021).

    Article 

    Google Scholar 

  • Prudhomme, G. O. et al. Ecophysiology and growth of white spruce seedlings from various seed sources along a climatic gradient support the need for assisted migration. Front. Plant Sci. 8, 2214 (2017).

    Article 

    Google Scholar 

  • Girardin, M. P. et al. Annual aboveground carbon uptake enhancements from assisted gene flow in boreal black spruce forests are not long-lasting. Nat. Commun. 12, 1169 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zohner, C. M., Mo, L., Sebald, V. & Renner, S. S. Leaf-out in northern ecotypes of wide-ranging trees requires less spring warming, enhancing the risk of spring frost damage at cold range limits. Glob. Ecol. Biogeogr. 29, 1065–1072 (2020).

    Article 

    Google Scholar 

  • Saucier, J.-P., Baldwin, K., Krestov, P. & Jorgenson, T. Boreal forests. In Routledge Handbook of Forest Ecology (eds Peh, K.S.-H. et al.) 7–29 (Routledge, 2015).

    Google Scholar 

  • Hutchinson, M. F. et al. Development and testing of Canada-wide interpolated spatial models of daily minimum-maximum temperature and precipitation for 1961–2003. J. Appl. Meteorol. Climatol. 48, 725–741 (2009).

    ADS 
    Article 

    Google Scholar 

  • Gennaretti, F., Sangelantoni, L. & Grenier, P. Toward daily climate scenarios for Canadian Arctic coastal zones with more realistic temperature-precipitation interdependence. J. Geophys. Res. Atmos. 120, 862–877 (2015).

    Article 

    Google Scholar 

  • Mpelasoka, F. S. & Chiew, F. H. S. Influence of rainfall scenario construction methods on runoff projections. J. Hydrometeorol. 10, 1168–1183 (2009).

    ADS 
    Article 

    Google Scholar 

  • Giorgi, F. Thirty years of regional climate modeling: Where are we and where are we going next? J. Geophys. Res. 124, 5696–5723 (2019).

    Article 

    Google Scholar 

  • Laughlin, G. P. & Kalma, J. D. Frost hazard assessment from local weather and terrain data. Agric. For. Meteorol. 40, 1–16 (1987).

    ADS 
    Article 

    Google Scholar 

  • Sørland, S. L., Schar, C., Luthi, D. & Kjellstrom, E. Bias patterns and climate change signals in GCM-RCM model chains. Environ. Res. Lett. 13, 074017 (2018).

    ADS 
    Article 

    Google Scholar 

  • von Trentini, F., Aalbers, E. E., Fischer, E. M. & Ludwig, R. Comparing interannual variability in three regional single-model initial-condition large ensembles (smiles) over Europe. Earth Syst. Dyn. 11, 1013–1031 (2020).

    ADS 
    Article 

    Google Scholar 

  • Hänninen, H. & Pelkonen, H. Effects of temperature on dormancy release in Norway spruce and Scots pine seedlings. Silva Fenn. 22, 5357 (1988).

    Google Scholar 

  • Lechowicz, M. J. Why do temperate deciduous trees leaf out at different times? Adaptation and ecology of forest communities. Am. Nat. 124, 821–842 (1984).

    Article 

    Google Scholar 

  • Olson, M. S. et al. The adaptive potential of Populus balsamifera L. to phenology requirements in a warmer global climate. Mol. Ecol. 22, 1214–1230 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hawkins, C. D. B. & Dhar, A. Spring bud phenology of 18 Betula papyrifera populations in British Columbia. Scand. J. For. Res. 27, 507–519 (2012).

    Article 

    Google Scholar 

  • Bronson, D. R., Gower, S. T., Tanner, M. & Van Herk, I. Effect of ecosystem warming on boreal black spruce bud burst and shoot growth. Glob. Change Biol. 15, 1534–1543 (2009).

    ADS 
    Article 

    Google Scholar 

  • Basler, D. Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe. Agric. For. Meteorol. 217, 10–21 (2016).

    ADS 
    Article 

    Google Scholar 

  • Man, R., Lu, P. & Dang, Q.-L. Insufficient chilling effects vary among boreal tree species and chilling duration. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.01354 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • R Development Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). http://www.R-project.org.


  • Source: Ecology - nature.com

    Absent legislative victory, the president can still meet US climate goals

    Spatiotemporal variation characteristics of livestock manure nutrient in the soil environment of the Yangtze River Delta from 1980 to 2018