in

Warm springs alter timing but not total growth of temperate deciduous trees

  • Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Chang. 4, 598–604 (2014).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110–114 (2018).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Finzi, A. C. et al. Carbon budget of the Harvard Forest Long-Term Ecological Research site: pattern, process, and response to global change. Ecol. Monogr. 90, e01423 (2020).

    Article 

    Google Scholar 

  • Keeling, C. D., Chin, J. F. S. & Whorf, T. P. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382, 146–149 (1996).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • Dragoni, D. et al. Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA. Glob. Chang. Biol. 17, 886–897 (2011).

    Article 
    ADS 

    Google Scholar 

  • Zhou, S. et al. Explaining inter-annual variability of gross primary productivity from plant phenology and physiology. Agric. For. Meteorol. 226–227, 246–256 (2016).

    Article 
    ADS 

    Google Scholar 

  • Fu, Z. et al. Maximum carbon uptake rate dominates the interannual variability of global net ecosystem exchange. Glob. Chang. Biol. 25, 3381–3394 (2019).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Savage, J. A. & Chuine, I. Coordination of spring vascular and organ phenology in deciduous angiosperms growing in seasonally cold climates. New Phytol. 230, 1700–1715 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Delpierre, N. et al. Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Ann. For. Sci. 73, 5–25 (2016).

    Article 

    Google Scholar 

  • Xue, B.-L. et al. Global patterns of woody residence time and its influence on model simulation of aboveground biomass. Global Biogeochem. Cycles 31, 821–835 (2017).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • Russell, M. B. et al. Residence times and decay rates of downed woody debris biomass/carbon in eastern US forests. Ecosystems 17, 765–777 (2014).

    CAS 
    Article 

    Google Scholar 

  • Richardson, A. D. et al. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Glob. Chang. Biol. 18, 566–584 (2012).

    Article 
    ADS 

    Google Scholar 

  • Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang. 11, 234–240 (2021).

    Article 
    ADS 

    Google Scholar 

  • Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl Acad. Sci. USA 116, 4382–4387 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Ahlström, A., Schurgers, G., Arneth, A. & Smith, B. Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections. Environ. Res. Lett. 7, 044008 (2012).

    Article 
    ADS 

    Google Scholar 

  • Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).

    Article 
    ADS 

    Google Scholar 

  • Fatichi, S., Leuzinger, S. & Körner, C. Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytol. 201, 1086–1095 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lu, X. & Keenan, T. F. No evidence for a negative effect of growing season photosynthesis on leaf senescence timing. Glob. Chang. Biol. 28, 3083–3093 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Oishi, A. C. et al. Warmer temperatures reduce net carbon uptake, but do not affect water use, in a mature southern Appalachian forest. Agric. For. Meteorol. 252, 269–282 (2018).

    Article 
    ADS 

    Google Scholar 

  • Delpierre, N., Berveiller, D., Granda, E. & Dufrêne, E. Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. New Phytol. 210, 459–470 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Huang, J.-G. et al. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proc. Natl Acad. Sci. USA 117, 20645–20652 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rossi, S. et al. Critical temperatures for xylogenesis in conifers of cold climates. Global Ecol. Biogeogr. 17, 696–707 (2008).

    Article 

    Google Scholar 

  • Babst, F. et al. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 5, eaat4313 (2019).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Gao, S. et al. An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas. Nat. Ecol. Evol. 6, 397–404 (2022).

    PubMed 
    Article 

    Google Scholar 

  • Zweifel, R. et al. Why trees grow at night. New Phytol. 231, 2174–2185 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tumajer, J., Scharnweber, T., Smiljanic, M. & Wilmking, M. Limitation by vapour pressure deficit shapes different intra-annual growth patterns of diffuse- and ring-porous temperate broadleaves. New Phytol. 233, 2429–2441 (2022).

    PubMed 
    Article 

    Google Scholar 

  • Etzold, S. et al. Number of growth days and not length of the growth period determines radial stem growth of temperate trees. Ecol. Lett. 25, 427–439 (2022).

    PubMed 
    Article 

    Google Scholar 

  • Zani, D., Crowther, T. W., Mo, L., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Zohner, C. M., Renner, S. S., Sebald, V. & Crowther, T. W. How changes in spring and autumn phenology translate into growth-experimental evidence of asymmetric effects. J. Ecol. 109, 2717–2728 (2021).

    Article 

    Google Scholar 

  • Cabon, A. et al. Cross-biome synthesis of source versus sink limits to tree growth. Science 376, 758–761 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • D’Orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Chang. Biol. 24, 2339–2351 (2018).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Helcoski, R. et al. Growing season moisture drives interannual variation in woody productivity of a temperate deciduous forest. New Phytol. 223, 1204–1216 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • McMahon, S. M. & Parker, G. G. A general model of intra-annual tree growth using dendrometer bands. Ecol. Evol. 5, 243–254 (2015).

    PubMed 
    Article 

    Google Scholar 

  • D’Orangeville, L. et al. Peak radial growth of diffuse-porous species occurs during periods of lower water availability than for ring-porous and coniferous trees. Tree Physiol. 42, 304–316 (2022).

    PubMed 
    Article 

    Google Scholar 

  • Richardson, A. D. et al. Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytol. 197, 850–861 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Elmore, A. J., Nelson, D. M. & Craine, J. M. Earlier springs are causing reduced nitrogen availability in North American eastern deciduous forests. Nat. Plants 2, 16133 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cuny, H. E. et al. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat. Plants 1, 15160 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tardif, J. C. & Conciatori, F. Influence of climate on tree rings and vessel features in red oak and white oak growing near their northern distribution limit, southwestern Quebec, Canada. Can. J. For. Res. 36, 2317–2330 (2006).

    Article 

    Google Scholar 

  • Roibu, C.-C. et al. The climatic response of tree ring width components of ash (Fraxinus excelsior L.) and common oak (Quercus robur L.) from eastern Europe. Forests 11, 600 (2020).

    Article 

    Google Scholar 

  • Kern, Z. et al. Multiple tree-ring proxies (earlywood width, latewood width and δ13C) from pedunculate oak (Quercus robur L.), Hungary. Quat. Int. 293, 257–267 (2013).

    Article 

    Google Scholar 

  • Trumbore, S., Gaudinski, J. B., Hanson, P. J. & Southon, J. R. Quantifying ecosystem-atmosphere carbon exchange with a 14C label. Eos. Trans. Am. Geophys. Union 83, 265–268 (2002).

    Article 
    ADS 

    Google Scholar 

  • Del Mar Delgado, M. et al. Differences in spatial versus temporal reaction norms for spring and autumn phenological events. Proc. Natl Acad. Sci. USA 117, 31249–31258 (2020).

    Article 
    CAS 

    Google Scholar 

  • Anderson-Teixeira, K. J. et al. Joint effects of climate, tree size, and year on annual tree growth derived from tree-ring records of ten globally distributed forests. Glob. Chang. Biol. 28, 245–266 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Banbury Morgan, R. et al. Global patterns of forest autotrophic carbon fluxes. Glob. Chang. Biol. 27, 2840–2855 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Churkina, G., Schimel, D., Braswell, B. H. & Xiao, X. Spatial analysis of growing season length control over net ecosystem exchange. Glob. Chang. Biol. 11, 1777–1787 (2005).

    Article 
    ADS 

    Google Scholar 

  • Liu, H. et al. Phenological mismatches between above- and belowground plant responses to climate warming. Nat. Clim. Chang. 12, 97–102 (2022).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Chang. 6, 1023–1027 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • Zhang, J. et al. Drought limits wood production of Juniperus przewalskii even as growing seasons lengthens in a cold and arid environment. CATENA 196, 104936 (2021).

    Article 

    Google Scholar 

  • Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2022).

    Article 
    ADS 

    Google Scholar 

  • Bourg, N. A., McShea, W. J., Thompson, J. R., McGarvey, J. C. & Shen, X. Initial census, woody seedling, seed rain, and stand structure data for the SCBI SIGEO Large Forest Dynamics Plot. Ecology 94, 2111–2112 (2013).

    Article 

    Google Scholar 

  • Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Chang. Biol. 21, 528–549 (2015).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Davies, S. J. et al. ForestGEO: understanding forest diversity and dynamics through a global observatory network. Biol. Conserv. 253, 108907 (2021).

    Article 

    Google Scholar 

  • Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).

    Article 
    ADS 

    Google Scholar 

  • Herrmann, V. et al. Tree circumference dynamics in four forests characterized using automated dendrometer bands. PLoS ONE 11, e0169020 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Friedl, M., Gray, J. & Sulla-Menashe, D. MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid V006. LAADS DAAC https://doi.org/10.5067/MODIS/MCD12Q2.006 (2019).

  • Anderson-Teixeira, K. et al. Forestgeo/Climate: initial release. Zenodo https://doi.org/10.5281/ZENODO.4041609 (2020).

  • Benestad, R. E., Hanssen-Bauer, I. & Chen, D. Empirical-Statistical Downscaling (World Scientific, 2008).

  • Boose, E. & Gould, E. Shaler Meteorological Station at Harvard Forest 1964–2002. Environmental Data Initiative https://doi.org/10.6073/PASTA/213335F5DAA17222A738C105B9FA60C4 (2021).

  • Boose, E. Fisher Meteorological Station at Harvard Forest since 2001. Environmental Data Initiative https://doi.org/10.6073/PASTA/69E92642B512897032446CFE795CFFB8 (2021).

  • Beguería, S., Vicente-Serrano, S. M., Reig, F. & Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).

    Article 

    Google Scholar 

  • van de Pol, M. et al. Identifying the best climatic predictors in ecology and evolution. Methods Ecol. Evol. 7, 1246–1257 (2016).

    Article 

    Google Scholar 

  • Gabry, J. et al. Rstanarm: Bayesian applied regression modeling via Stan. R package version 2.21.1 https://mc-stan.org/rstanarm (2020).

  • Stan Development Team. Stan modeling language users guide and reference manual, 2.28. https://mc-stan.org/users/documentation/ (2019).

  • Stokes, M. A. & Smiley, T. L. An Introduction to Tree-ring Dating (Univ. Arizona Press, 1968).

  • Speer, J. H. Fundamentals of Tree-ring Research (Univ. Arizona Press, 2010).

  • Alexander, M. R. et al. The potential to strengthen temperature reconstructions in ecoregions with limited tree line using a multispecies approach. Quat. Res. 92, 583–597 (2019).

    Article 

    Google Scholar 

  • Dye, A. et al. Comparing tree-ring and permanent plot estimates of aboveground net primary production in three eastern U.S. forests. Ecosphere 7, e01454 (2016).

    Article 

    Google Scholar 

  • Pederson, N. Climatic Sensitivity and Growth of Southern Temperate Trees in the Eastern United States: Implications for the Carbon Cycle—ProQuest (Columbia Univ., 2005).

  • Maxwell, J. T. et al. Sampling density and date along with species selection influence spatial representation of tree-ring reconstructions. Clim. Past 16, 1901–1916 (2020).

    Article 

    Google Scholar 

  • Cook, E. R. & Kairiukstis, L. A. Methods of Dendrochronology: Applications in the Environmental Sciences (Springer Netherlands, 1990).

  • Cook, E. R. A Time Series Analysis Approach to Tree Ring Standardization (Univ. Arizona, 1985).

  • Cook, E. R. & Peters, K. Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7, 361–370 (1997).

    Article 
    ADS 

    Google Scholar 

  • Jones, P. D., Osborn, T. J. & Briffa, K. R. Estimating sampling errors in large-scale temperature averages. J. Clim. 10, 2548–2568 (1997).

    Article 
    ADS 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2020).

  • Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).

    Article 

    Google Scholar 

  • Zang, C. & Biondi, F. Dendroclimatic calibration in R: the bootRes package for response and correlation function analysis. Dendrochronologia 31, 68–74 (2013).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Solving a longstanding conundrum in heat transfer

    Thermal adaptation best explains Bergmann’s and Allen’s Rules across ecologically diverse shorebirds