in

Warming response of peatland CO2 sink is sensitive to seasonality in warming trends

  • Xia, J. et al. Terrestrial carbon cycle affected by non-uniform climate warming. Nat. Geosci. 7, 173–180 (2014).

    CAS 
    Article 

    Google Scholar 

  • Tang, R. et al. Increasing terrestrial ecosystem carbon release in response to autumn cooling and warming. Nat. Clim. Change 12, 380–385 (2022).

    CAS 
    Article 

    Google Scholar 

  • Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).

    CAS 
    Article 

    Google Scholar 

  • Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Change 8, 907–913 (2018).

    CAS 
    Article 

    Google Scholar 

  • Treat, C. C. et al. Widespread global peatland establishment and persistence over the last 130,000 y. Proc. Natl Acad. Sci. USA 116, 4822–4827 (2019).

    CAS 
    Article 

    Google Scholar 

  • Frolking, S., Roulet, N. & Fuglestvedt, J. How northern peatlands influence the Earth’s radiative budget: sustained methane emission versus sustained carbon sequestration. J. Geophys. Res. Biogeosci. 111, G01008 (2006).

    Google Scholar 

  • Loisel, J. et al. Expert assessment of future vulnerability of the global peatland carbon sink. Nat. Clim. Change 11, 70–77 (2021).

    Article 

    Google Scholar 

  • Helbig, M. et al. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest–wetland landscape. Glob. Change Biol. 23, 3231–3248 (2017).

    Article 

    Google Scholar 

  • Koebsch, F. et al. Refining the role of phenology in regulating gross ecosystem productivity across European peatlands. Glob. Change Biol. 26, 876–887 (2020).

    Article 

    Google Scholar 

  • Huang, Y. et al. Tradeoff of CO2 and CH4 emissions from global peatlands under water-table drawdown. Nat. Clim. Change 11, 618–622 (2021).

    CAS 
    Article 

    Google Scholar 

  • Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).

    CAS 

    Google Scholar 

  • Helfter, C. et al. Drivers of long-term variability in CO2 net ecosystem exchange in a temperate peatland. Biogeosciences 12, 1799–1811 (2015).

    Article 

    Google Scholar 

  • Järveoja, J., Nilsson, M. B., Gažovič, M., Crill, P. M. & Peichl, M. Partitioning of the net CO2 exchange using an automated chamber system reveals plant phenology as key control of production and respiration fluxes in a boreal peatland. Glob. Change Biol. 24, 3436–3451 (2018).

    Article 

    Google Scholar 

  • Mäkiranta, P. et al. Responses of phenology and biomass production of boreal fens to climate warming under different water-table level regimes. Glob. Change Biol. 24, 944–956 (2018).

    Article 

    Google Scholar 

  • Li, Q. et al. Abiotic and biotic drivers of microbial respiration in peat and its sensitivity to temperature change. Soil Biol. Biochem. 153, 108077 (2021).

    CAS 
    Article 

    Google Scholar 

  • Moore, T. R. et al. Spring photosynthesis in a cool temperate bog. Glob. Change Biol. 12, 2323–2335 (2006).

    Article 

    Google Scholar 

  • Korrensalo, A. et al. Species-specific temporal variation in photosynthesis as a moderator of peatland carbon sequestration. Biogeosciences 14, 257–269 (2017).

    CAS 
    Article 

    Google Scholar 

  • Weltzin, J. F. et al. Response of bog and fen plant communities to warming and water-table manipulations. Ecology 81, 3464–3478 (2000).

    Article 

    Google Scholar 

  • Dimitrov, D. D., Grant, R. F., Lafleur, P. M. & Humphreys, E. R. Modeling the effects of hydrology on gross primary productivity and net ecosystem productivity at Mer Bleue bog. J. Geophys. Res. Biogeosci. 116, G04010 (2011).

    Article 
    CAS 

    Google Scholar 

  • Bubier, J., Crill, P., Mosedale, A., Frolking, S. & Linder, E. Peatland responses to varying interannual moisture conditions as measured by automatic CO2 chambers. Glob. Biogeochem. Cycles 17, 1066 (2003).

    Article 
    CAS 

    Google Scholar 

  • Moore, T. R. & Knowles, R. The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can. J. Soil Sci. 69, 33–38 (1989).

    CAS 
    Article 

    Google Scholar 

  • Nichols, D. S. Temperature of upland and peatland soils in a north central Minnesota forest. Can. J. Soil Sci. 78, 493–509 (1998).

    Article 

    Google Scholar 

  • Bellisario, L. M., Moore, T. R. & Bubier, J. L. Net ecosystem CO2 exchange in a boreal peatland, northern Manitoba. Écoscience 5, 534–541 (1998).

    Article 

    Google Scholar 

  • Yu, Z. et al. Peatlands and their role in the global carbon cycle. Eos 92, 97–98 (2011).

    Article 

    Google Scholar 

  • Hanson, P. J. et al. Rapid net carbon loss from a whole-ecosystem warmed peatland. AGU Adv. 1, e2020AV000163 (2020).

    Article 

    Google Scholar 

  • Vincent, L. A. et al. Observed trends in Canada’s climate and influence of low-frequency variability modes. J. Clim. 28, 4545–4560 (2015).

    Article 

    Google Scholar 

  • Templer, P. H. et al. Climate Change Across Seasons Experiment (CCASE): a new method for simulating future climate in seasonally snow-covered ecosystems. PLoS ONE 12, e0171928 (2017).

    Article 
    CAS 

    Google Scholar 

  • Peichl, M. et al. A 12-year record reveals pre-growing season temperature and water table level threshold effects on the net carbon dioxide exchange in a boreal fen. Environ. Res. Lett. 9, 055006 (2014).

    Article 

    Google Scholar 

  • Helbig, M., Humphreys, E. R. & Todd, A. Contrasting temperature sensitivity of CO2 exchange in peatlands of the Hudson Bay Lowlands, Canada. J. Geophys. Res. Biogeosci. 124, 2126–2143 (2019).

    CAS 
    Article 

    Google Scholar 

  • Griffis, T. J., Rouse, W. R. & Waddington, J. M. Interannual variability of net ecosystem CO2 exchange at a subarctic fen. Glob. Biogeochem. Cycles 14, 1109–1121 (2000).

    CAS 
    Article 

    Google Scholar 

  • Bubier, J. L., Crill, P. M., Moore, T. R., Savage, K. & Varner, R. K. Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex. Glob. Biogeochem. Cycles 12, 703–714 (1998).

    CAS 
    Article 

    Google Scholar 

  • Park, S.-B. et al. Temperature control of spring CO2 fluxes at a coniferous forest and a peat bog in Central Siberia. Atmosphere 12, 984 (2021).

    CAS 
    Article 

    Google Scholar 

  • Adkinson, A. C., Syed, K. H. & Flanagan, L. B. Contrasting responses of growing season ecosystem CO2 exchange to variation in temperature and water table depth in two peatlands in northern Alberta, Canada. J. Geophys. Res. Biogeosci. 116, G01004 (2011).

    Article 
    CAS 

    Google Scholar 

  • Heiskanen, L. et al. Carbon dioxide and methane exchange of a patterned subarctic fen during two contrasting growing seasons. Biogeosciences 18, 873–896 (2021).

    CAS 
    Article 

    Google Scholar 

  • Lafleur, P. M., Roulet, N. T., Bubier, J. L., Frolking, S. & Moore, T. R. Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Glob. Biogeochem. Cycles 17, 1036 (2003).

    Article 
    CAS 

    Google Scholar 

  • Joiner, D. W., Lafleur, P. M., McCaughey, J. H. & Bartlett, P. A. Interannual variability in carbon dioxide exchanges at a boreal wetland in the BOREAS northern study area. J. Geophys. Res. Atmos. 104, 27663–27672 (1999).

    CAS 
    Article 

    Google Scholar 

  • McVeigh, P., Sottocornola, M., Foley, N., Leahy, P. & Kiely, G. Meteorological and functional response partitioning to explain interannual variability of CO2 exchange at an Irish Atlantic blanket bog. Agric. For. Meteorol. 194, 8–19 (2014).

    Article 

    Google Scholar 

  • Helbig, M. et al. Increasing contribution of peatlands to boreal evapotranspiration in a warming climate. Nat. Clim. Change 10, 555–560 (2020).

    CAS 
    Article 

    Google Scholar 

  • Bourgault, M.-A., Larocque, M. & Garneau, M. How do hydrogeological setting and meteorological conditions influence water table depth and fluctuations in ombrotrophic peatlands? J. Hydrol. X 4, 100032 (2019).

    Article 

    Google Scholar 

  • Yurova, A., Wolf, A., Sagerfors, J. & Nilsson, M. Variations in net ecosystem exchange of carbon dioxide in a boreal mire: modeling mechanisms linked to water table position. J. Geophys. Res. Biogeosci. 112, G02025 (2007).

    Article 
    CAS 

    Google Scholar 

  • Laine, A. M. et al. Warming impacts on boreal fen CO2 exchange under wet and dry conditions. Glob. Change Biol. 25, 1995–2008 (2019).

    Article 

    Google Scholar 

  • Chivers, M. R., Turetsky, M. R., Waddington, J. M., Harden, J. W. & McGuire, A. D. Effects of experimental water table and temperature manipulations on ecosystem CO2 fluxes in an Alaskan rich fen. Ecosystems 12, 1329–1342 (2009).

    CAS 
    Article 

    Google Scholar 

  • Juszczak, R. et al. Ecosystem respiration in a heterogeneous temperate peatland and its sensitivity to peat temperature and water table depth. Plant Soil 366, 505–520 (2013).

    CAS 
    Article 

    Google Scholar 

  • Hao, D. et al. Estimating hourly land surface downward shortwave and photosynthetically active radiation from DSCOVR/EPIC observations. Remote Sens. Environ. 232, 111320 (2019).

    Article 

    Google Scholar 

  • O’Donnell, J. A., Romanovsky, V. E., Harden, J. W. & McGuire, A. D. The effect of moisture content on the thermal conductivity of moss and organic soil horizons from black spruce ecosystems in interior Alaska. Soil Sci. 174, 646–651 (2009).

    Article 
    CAS 

    Google Scholar 

  • Nijp, J. J. et al. Rain events decrease boreal peatland net CO2 uptake through reduced light availability. Glob. Change Biol. 21, 2309–2320 (2015).

    Article 

    Google Scholar 

  • Zhang, Y., Commane, R., Zhou, S., Williams, A. P. & Gentine, P. Light limitation regulates the response of autumn terrestrial carbon uptake to warming. Nat. Clim. Change 10, 739–743 (2020).

    CAS 
    Article 

    Google Scholar 

  • Samson, M. et al. The impact of experimental temperature and water level manipulation on carbon dioxide release in a poor fen in northern Poland. Wetlands 38, 551–563 (2018).

    Article 

    Google Scholar 

  • Drever, C. R. et al. Natural climate solutions for Canada. Sci. Adv. 7, eabd6034 (2021).

    CAS 
    Article 

    Google Scholar 

  • Hemes, K. S., Runkle, B. R. K., Novick, K. A., Baldocchi, D. D. & Field, C. B. An ecosystem-scale flux measurement strategy to assess natural climate solutions. Environ. Sci. Technol. 55, 3494–3504 (2021).

    CAS 
    Article 

    Google Scholar 

  • Walker, T. W. N. et al. A systemic overreaction to years versus decades of warming in a subarctic grassland ecosystem. Nat. Ecol. Evol. 4, 101–108 (2020).

    Article 

    Google Scholar 

  • Xu, B. et al. Seasonal variability of forest sensitivity to heat and drought stresses: a synthesis based on carbon fluxes from North American forest ecosystems. Glob. Change Biol. 26, 901–918 (2020).

    Article 

    Google Scholar 

  • Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–52 (2008).

    CAS 
    Article 

    Google Scholar 

  • Joyce, P. et al. How robust Is the apparent break-down of northern high-latitude temperature control on spring carbon uptake? Geophys. Res. Lett. 48, e2020GL091601 (2021).

    Article 

    Google Scholar 

  • Grant, R. F. et al. Changes in net ecosystem productivity of boreal black spruce stands in response to changes in temperature at diurnal and seasonal time scales. Tree Physiol. 29, 1–17 (2009).

    CAS 
    Article 

    Google Scholar 

  • Kwon, M. J. et al. Siberian 2020 heatwave increased spring CO2 uptake but not annual CO2 uptake. Environ. Res. Lett. 16, 124030 (2021).

    CAS 
    Article 

    Google Scholar 

  • Yu, Z., Griffis, T. J. & Baker, J. M. Warming temperatures lead to reduced summer carbon sequestration in the U.S. Corn Belt. Commun. Earth Environ. 2, 53 (2021).

    Article 

    Google Scholar 

  • Wang, S. et al. Warmer spring alleviated the impacts of 2018 European summer heatwave and drought on vegetation photosynthesis. Agric. For. Meteorol. 295, 108195 (2020).

    Article 

    Google Scholar 

  • Wang, T. et al. Emerging negative impact of warming on summer carbon uptake in northern ecosystems. Nat. Commun. 9, 5391 (2018).

    CAS 
    Article 

    Google Scholar 

  • Lin, X. et al. Siberian and temperate ecosystems shape Northern Hemisphere atmospheric CO2 seasonal amplification. Proc. Natl Acad. Sci. USA 117, 21079–21087 (2020).

    CAS 
    Article 

    Google Scholar 

  • Helbig, M. et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Zenodo https://doi.org/10.5281/zenodo.6685222 (2022).

  • Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC (2015); https://doi.org/10.5067/MODIS/MOD13Q1.006

  • Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Article 

    Google Scholar 

  • Lees, K. J. et al. Using spectral indices to estimate water content and GPP in Sphagnum moss and other peatland vegetation. IEEE Trans. Geosci. Remote Sens. 58, 4547–4557 (2020).

    Article 

    Google Scholar 

  • Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).

    Article 

    Google Scholar 

  • Page, S. E. & Baird, A. J. Peatlands and global change: response and resilience. Annu. Rev. Environ. Resour. 41, 35–57 (2016).

    Article 

    Google Scholar 

  • Juottonen, H. et al. Integrating decomposers, methane-cycling microbes and ecosystem carbon fluxes along a peatland successional gradient in a land uplift region. Ecosystems https://doi.org/10.1007/s10021-021-00713-w (2021).


  • Source: Ecology - nature.com

    The response of wheat and its microbiome to contemporary and historical water stress in a field experiment

    New hardware offers faster computation for artificial intelligence, with much less energy