in

Water motion and pH jointly impact the availability of dissolved inorganic carbon to macroalgae

  • Duggins, D. O., Simenstad, C. A. & Estes, J. A. Magnification of secondary producition by kelp detritus in coastal marine ecosystems. Science 1979(245), 170–173 (1989).

    Article 
    ADS 

    Google Scholar 

  • Hill, R. et al. Can macroalgae contribute to blue carbon? An Australian perspective. Limnol. Oceanogr. 60, 1689–1706 (2015).

    Article 
    ADS 

    Google Scholar 

  • Mann, K. H. Seaweeds: Their productivity and strategy for growth. Science 1979(182), 975–981 (1973).

    Article 
    ADS 

    Google Scholar 

  • Steneck, R. S. et al. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).

    Article 

    Google Scholar 

  • Giordano, M., Beardall, J. & Raven, J. A. CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 56, 99–131 (2005).

    Article 
    CAS 

    Google Scholar 

  • Raven, J. A. & Beardall, J. The ins and outs of CO2. J. Exp. Bot. 67, 1–13 (2016).

    Article 
    CAS 

    Google Scholar 

  • Raven, J. A. et al. Seaweeds in cold seas: Evolution and carbon acquisition. Ann. Bot. 90, 525–536. https://doi.org/10.1093/aob/mcf171 (2002).

    Article 
    CAS 

    Google Scholar 

  • Raven, J. et al. Ocean Acidification due to Increasing Atmospheric Carbon Dioxide 1–68 (The Royal Society, 2005).

    Google Scholar 

  • Kübler, J. E. & Dudgeon, S. R. Predicting effects of ocean acidification and warming on algae lacking carbon concentrating mechanisms. PLoS ONE 10, 1–19 (2015).

    Article 

    Google Scholar 

  • Fernández, P. A., Hurd, C. L. & Roleda, M. Y. Bicarbonate uptake via an anion excange protein is the main mechanism of inorganic carbon acquisition by the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) under variable pH1. J. Phycol. 50, 1–11 (2014).

    Article 

    Google Scholar 

  • Raven, J. A. et al. Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Funct. Plant Biol. 29, 355 (2002).

    Article 
    CAS 

    Google Scholar 

  • Raven, J. A., Cockell, C. S. & De La Rocha, C. L. The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philos. Trans. R. Soc. B 363, 2641–2650 (2008).

    Article 
    CAS 

    Google Scholar 

  • Bidwell, R. G. S. S. & McLachlan, J. Carbon nutrition of seaweeds: Photosynthesis, photorespiration and respiration. J. Exp. Mar. Biol. Ecol. 86, 15–46 (1985).

    Article 
    CAS 

    Google Scholar 

  • Hurd, C. L. Water motion, marine macroalgal physiology and production. J. Phycol. 36, 453–472. https://doi.org/10.1046/j.1529-8817.2000.99139.x (2000).

    Article 
    CAS 

    Google Scholar 

  • Hurd, C. L., Stevens, C. L., Laval, B. E., Lawrence, G. A. & Harrison, P. J. Visualization of seawater flow around morphologically distinct forms of the giant kelp Macrocystis integrifolia from wave-sheltered and exposed sites. Limnol. Oceanogr. 42, 156–163. https://doi.org/10.4319/lo.1997.42.1.0156 (1997).

    Article 
    ADS 

    Google Scholar 

  • Smith, F. A. A. & Walker, N. A. A. Photosynthesis by aquatic plants: Effects of unstirred layers in relation to assimilation of CO2 and HCO3– to carbon isotope discrimination. N. Phytol. 86, 245–259 (1980).

    Article 
    CAS 

    Google Scholar 

  • Wheeler, W. N. Effect of boundary layer transport on the fixation of carbon by the giant kelp Macrocystis pyrifera. Mar. Biol. 56, 103–110 (1980).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hurd, C. L., Lenton, A., Tilbrook, B. & Boyd, P. W. Current understanding and challenges for oceans in a higher-CO2 world. Nat. Clim. Chang. 8, 686–694 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Stocker, T. F. et al. Technical Summary. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 33–115 (2013).

  • Hepburn, C. D. et al. Diversity of carbon use strategies in a kelp forest community: Implications for a high CO2 ocean. Glob. Chang. Biol. 17, 2488–2497 (2011).

    Article 
    ADS 

    Google Scholar 

  • Beer, S. & Koch, E. Photosynthesis of marine macroalgae and seagrasses in globally changing CO2 environments. Mar. Ecol. Prog. Ser. 141, 199–204 (1996).

    Article 
    ADS 

    Google Scholar 

  • Ihnken, S., Roberts, S. & Beardall, J. Differential responses of growth and photosynthesis in the marine diatom Chaetoceros muelleri to CO2 and light availability. Phycologia 50, 182–193 (2011).

    Article 
    CAS 

    Google Scholar 

  • Gerard, V. A. In situ water motion and nutrient uptake by the giant kelp Macrocystis pyrifera. Mar. Biol. 69, 51–54 (1982).

    Article 

    Google Scholar 

  • Hepburn, C. D., Holborow, J. D., Wing, S. R., Frew, R. D. & Hurd, C. L. Exposure to waves enhances the growth rate and nitrogen status of the giant kelp Macrocystis pyrifera. Mar. Ecol. Prog. Ser. 339, 99–108 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hurd, C. L. Shaken and stirred: The fundamental role of water motion in resource acquisition and seaweed productivity. Persp. Phycol. 4, 73–81 (2017).

    ADS 

    Google Scholar 

  • Sültemeyer, D. F., Miller, A. G., Espie, G. S., Fock, H. P. & Canvin, D. T. Active CO2 transport by the green alga Chlamydomonas reinhardtii. Plant Physiol. 89, 1213–1219 (1989).

    Article 

    Google Scholar 

  • Koch, M., Bowes, G., Ross, C. & Zhang, X. H. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Chang. Biol. 19, 103–132 (2013).

    Article 
    ADS 

    Google Scholar 

  • Britton, D., Cornwall, C. E., Revill, A. T., Hurd, C. L. C. L. & Johnson, C. R. Ocean acidification reverses the positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat-forming kelp Ecklonia radiata. Sci. Rep. 6, 1–10 (2016).

    Article 

    Google Scholar 

  • Cornwall, C. E. et al. Carbon-use strategies in macroalgae: Differential responses to lowered ph and implications for ocean acidification. J. Phycol. 48, 137–144 (2012).

    Article 
    CAS 

    Google Scholar 

  • Kram, S. L. et al. Variable responses of temperate calcified and fleshy macroalgae to elevated pCO2 and warming. ICES J. Mar. Sci. 73, 693–703 (2016).

    Article 

    Google Scholar 

  • Kübler, J. E., Johnston, A. M. & Raven, J. A. The effects of reduced and elevated CO2 and O2 on the seaweed Lomentaria articulata. Plant Cell Environ. 22, 1303–1310 (1999).

    Article 

    Google Scholar 

  • van der Loos, L. M. et al. Responses of macroalgae to CO2 enrichment cannot be inferred solely from their inorganic carbon uptake strategy. Ecol. Evol. 9, 125–140 (2019).

    Article 

    Google Scholar 

  • Cornwall, C. E. & Hurd, C. L. Variability in the benefits of ocean acidification to photosynthetic rates of macroalgae without CO2-concentrating mechanisms. Mar. Freshw. Res. 71, 275–280 (2019).

    Article 

    Google Scholar 

  • Cornwall, C. E., Revill, A. T. & Hurd, C. L. High prevalence of diffusive uptake of CO2 by macroalgae in a temperate subtidal ecosystem. Photosynth. Res. 124, 181–190 (2015).

    Article 
    CAS 

    Google Scholar 

  • Lovelock, C. E., Reef, R., Raven, J. A. & Pandolfi, J. M. Regional variation in δ13C of coral reef macroalgae. Limnol. Oceanogr. 65, 2291–2302 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fischer, G. & Wiencke, C. Stable carbon isotope composition, depth distribution and fate of macroalgae from the Antarctic Peninsula region. Polar. Biol. 12, 341–348 (1992).

    Article 

    Google Scholar 

  • Stephens, T. A. & Hepburn, C. D. Mass-transfer gradients across kelp beds influence Macrocystis pyrifera growth over small spatial scales. Mar. Ecol. Prog. Ser. 515, 97–109 (2014).

    Article 
    ADS 

    Google Scholar 

  • Kregting, L. T., Hepburn, C. D. & Savidge, G. Seasonal differences in the effects of oscillatory and uni-directional flow on the growth and nitrate-uptake rates of juvenile Laminaria digitata (Phaeophyceae). J. Phycol. 51, 1116–1126 (2015).

    Article 
    CAS 

    Google Scholar 

  • Parker, H. S. Influence of relative water motion on the growth, ammonium uptake and carbon and nitrogen composition of Ulva lactuca (Chlorophyta). Mar. Biol. 63, 309–318 (1981).

    Article 
    CAS 

    Google Scholar 

  • Bergstrom, E. et al. Inorganic carbon uptake strategies in coralline algae: Plasticity across evolutionary lineages under ocean acidification and warming. Mar. Environ. Res. 161, 105107 (2020).

    Article 
    CAS 

    Google Scholar 

  • Maberly, S. C., Raven, J. A. & Johnston, A. M. Discrimination between C-12 and C-13 by marine plants. Oecologia 91, 481–492 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gattuso, J. P. et al. Package ‘Seacarb ’. Preprint at http://cran.r-project.org/package=seacarb (2015).

  • Raven, J. A., Beardall, J. & Giordano, M. Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynth. Res. 121, 111–124 (2014).

    Article 
    CAS 

    Google Scholar 

  • Raven, J. A., Walker, D. I., Johnston, A. M., Handley, L. L. & Kübler, J. E. Implications of 13C natural abundance measurements for photosynthetic performance by marine macrophytes in their natural environment. Mar. Ecol. Prog. Ser. 123, 193–205 (1995).

    Article 
    ADS 

    Google Scholar 

  • Raven, J. A. Inorganic carbon acquisition by marine autotrophs. Adv. Bot. Res. 27, 85–209 (1997).

    Article 
    CAS 

    Google Scholar 

  • Fernández, P. A., Roleda, M. Y. & Hurd, C. L. Effects of ocean acidification on the photosynthetic performance, carbonic anhydrase activity and growth of the giant kelp Macrocystis pyrifera. Photosynth. Res. 124, 293–304 (2015).

    Article 

    Google Scholar 

  • Bailly, J. & Coleman, J. R. Effect of CO(2) concentration on protein biosynthesis and carbonic anhydrase expression in Chlamydomonas reinhardtii. Plant Physiol. 87, 833–840 (1988).

    Article 
    CAS 

    Google Scholar 

  • Dionisio-Sese, M. L., Fukuzawa, H. & Miyachi, S. Light-induced carbonic anhydrase expression in Chlamydomonas reinhardtii. Plant Physiol. 94, 1103–1110 (1990).

    Article 
    CAS 

    Google Scholar 

  • Pollock, S. V., Colombo, S. L., Prout, D. L., Godfrey, A. C. & Moroney, J. V. Rubisco activase is required for optimal photosynthesis in the green alga Chlamydomonas reinhardtii in a low-CO2 atmosphere. Plant Physiol. 133, 1854–1861 (2003).

    Article 
    CAS 

    Google Scholar 

  • Carlberg, S., Axelsson, L., Larsson, C., Ryberg, H. & Uusitalo, J. Inducible CO2 concentrating mechanisms in green seaweeds I. Taxonomical and physiological aspects. In Current Research in Photosynthesis (ed. Baltscheffsky, M.) (Springer, 1990). https://doi.org/10.1007/978-94-009-0511-5_749.

    Chapter 

    Google Scholar 

  • Wheeler, W. N. Effect of boundary-layer transport on the fixation of carbon by the giant-kelp Macrocystis pyrifera. Mar. Biol. 56, 103–110 (1980).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Johnston, A. M. & Raven, J. A. Effects of culture in high CO2 on the photosynthetic physiology of Fucus serratus. Br. J. Phycol. 25, 75–82 (1990).

    Article 

    Google Scholar 

  • Connell, S. D., Kroeker, K. J., Fabricius, K. E., Kline, D. I. & Russell, B. D. The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Philos. Trans. R. Soc. Lond. 368, 20120442 (2013).

    Article 

    Google Scholar 

  • Porter, E. T., Sanford, L. P. & Suttles, S. E. Gypsum dissolution is not a universal integrator of water motion. Limnol. Oceanogr. 45, 145–158 (2000).

    Article 
    ADS 

    Google Scholar 

  • Gerard, V. A. & Mann, K. H. Growth and production of Laminaria longicruris (Phaeophyta) populations exposed to different intensities of water movement. J. Phycol. 15, 33–41 (1979).

    Article 

    Google Scholar 

  • Bivand, R., Keitt, T. & Rowlingson, B. Package ‘rgdal’. R Package https://doi.org/10.1353/lib.0.0050 (2016).

    Article 

    Google Scholar 

  • LINZ. LINZ Data Service. https://data.linz.govt.nz/layer/50258-nz-coastlines-topo-150k/history/ Accessed July 2021 (2021).

  • Kirk, J. T. Characteristics of the light field in highly turbid waters: A Monte Carlo study. Limnol. Oceanogr. 39, 702–706 (1994).

    Article 
    ADS 

    Google Scholar 

  • Strickland, J. D. H. & Parsons, T. R. A Practical Handbook of Seawater Analysis (Fisheries Research Board of Canada, 1968).

    Google Scholar 

  • Kohler, K. E. & Gill, S. M. Coral Point Count with Excel extensions (CPCe): A visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32, 1259–1269 (2006).

    Article 
    ADS 

    Google Scholar 

  • Axelsson, L., Mercado, J. & Figueroa, F. Utilization of HCO3− at high ph by the brown macroalga laminaria saccharina. Eur. J. Phycol. 35, 53–59 (2000).

    Article 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. Preprint at (2017).

  • Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    The effects of temperature stress and population origin on the thermal sensitivity of Lymantria dispar L. (Lepidoptera: Erebidae) larvae

    MIT scientists contribute to National Ignition Facility fusion milestone