Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).
Google Scholar
Temmerman, S. et al. Ecosystem-based coastal defence in the face of global change. Nature 504, 79–83 (2013).
Google Scholar
Koch, E. W. et al. Non-linearity in ecosystem services: Temporal and spatial variability in coastal protection. Front. Ecol. Environ. 7, 29–37 (2009).
Google Scholar
Gedan, K. B., Kirwan, M. L., Wolanski, E., Barbier, E. B. & Silliman, B. R. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm. Clim. Change https://doi.org/10.1007/s10584-010-0003-7 (2011).
Google Scholar
Zhu, Z. et al. Historic storms and the hidden value of coastal wetlands for nature-based flood defence. Nat. Sustain. 3, 1 (2020).
Google Scholar
Shepard, C. C., Crain, C. M. & Beck, M. W. The protective role of coastal marshes: A systematic review and meta-analysis. Plos One 6, e27374 (2011).
Coops, H., Boeters, R. & Smit, H. Direct and indirect effects of wave attack on helophytes. Aquat. Bot. 41, 333–352 (1991).
Google Scholar
van Wesenbeeck, B. K. et al. Coastal and riverine ecosystems as adaptive flood defenses under a changing climate. Mitig. Adapt. Strateg. Glob. Chang. 22, 1–8 (2016).
Quartel, S., Kroon, A., Augustinus, P. G. E. F., Van Santen, P. & Tri, N. H. Wave attenuation in coastal mangroves in the Red River Delta Vietnam. J. Asian Earth Sci. 29, 576–584 (2007).
Google Scholar
Bao, T. Q. Effect of mangrove forest structures on wave attenuation in coastal Vietnam. Oceanologia 53, 1 (2011).
Horstman, E. M. et al. Wave attenuation in mangroves: A quantitative approach to field observations. Coast. Eng. 94, 47–62 (2014).
Google Scholar
Dalrymple, R. A., Kirby, J. T. & Hwang, P. A. Wave diffraction due to areas of energy dissipation. J. Waterw. Ports Coast. Eng. 110, 67–69 (1984).
Google Scholar
Suzuki, T., Zijlema, M., Burger, B., Meijer, M. C. & Narayan, S. Wave dissipation by vegetation with layer schematization in SWAN. Coast. Eng. 59, 64–71 (2012).
Google Scholar
Maza, M., Lara, J. L. & Losada, I. Experimental analysis of wave attenuation and drag forces in a realistic fringe Rhizophora mangrove forest. Adv. Water Resour. 131, 1 (2019).
Google Scholar
Nepf, H. M. Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res. 35, 479–489 (1999).
Google Scholar
Wolters, M. et al. Saltmarsh erosion and restoration in south-east England: squeezing the evidence requires realignment. J. Appl. Ecol. 42, 844–851 (2005).
Google Scholar
Vuik, V., Jonkman, S. N., Borsje, B. W. & Suzuki, T. Nature-based flood protection: The efficiency of vegetated foreshores for reducing wave loads on coastal dikes. Coast. Eng. 116, 42–56 (2016).
Google Scholar
Yang, S. L., Shi, B. W., Bouma, T. J., Ysebaert, T. & Luo, X. X. Wave attenuation at a salt marsh margin: A case study of an exposed coast on the Yangtze estuary. Estuaries Coasts 35, 169–182 (2012).
Google Scholar
Bouma, T. J. et al. Trade-offs related to ecosystem engineering: A case study on stiffness of emerging macrophytes. Ecology 86, 2187–2199 (2005).
Google Scholar
Bouma, T. J., De Vries, M. B. & Herman, P. M. J. Comparing ecosystem engineering efficiency of two plant species with contrasting growth strategies. Ecology 91, 2696–2704 (2010).
Google Scholar
Ysebaert, T. et al. Wave attenuation by two contrasting ecosystem engineering salt marsh macrophytes in the intertidal pioneer zone. in Wetlands vol. 31 (2011).
Granek, E. & Ruttenberg, B. I. Changes in biotic and abiotic processes following mangrove clearing. Estuar. Coast. Shelf Sci. 80, 555–562 (2008).
Google Scholar
Mazda, Y., Magi, M., Ikeda, Y., Kurokawa, T. & Asano, T. Wave reduction in a mangrove forest dominated by Sonneratia sp. Wetl. Ecol. Manag. 14, 365–378 (2006).
Google Scholar
IAHR Design Manual. in (eds. Frostick, L. E., McLelland, S. J. & Mercer, T. G.) (CRC Press/Balkema, 2011).
Möller, I. et al. Wave attenuation over coastal salt marshes under storm surge conditions. Nat. Geosci. 7, 727–731 (2014).
Google Scholar
Booij, N., Ris, R. C. & Holthuijsen, L. H. A third-generation wave model for coastal regions: 1 Model description and validation. J. Geophys. Res. 104, 7649–7666 (1999).
Google Scholar
Mendez, F. J. & Losada, I. J. An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields. Coast. Eng. 51, 103–118 (2004).
Google Scholar
Järvelä, J. Determination of flow resistance caused by non-submerged woody vegetation. Int. J. River Basin Manag. 2, 61–70 (2004).
Google Scholar
Sumer, M. & Fredsøe, J. Book review hydrodynamics around cylindrical structures, B. M. Sumer and J. Fredsøe, World Scientific, Singapore. J. Fluids Struct. 12, 221–222 (1998).
Mendez, F. J., Losada, I. J., Dalrymple, R. A. & Losada, M. A. Effects of wave reflection and dissipation on wave-induced second order magnitudes. in Coastal Engineering 1998, Vols 1–3 (ed. Edge, B. L.) 537–550 (1999).
Jadhav, R. & Chen, Q. Field investigation of wave dissipation over salt marsh vegetation during tropical cyclone. (2012).
Anderson, M. E. & Smith, J. M. Wave attenuation by flexible, idealized salt marsh vegetation. Coast. Eng. 83, 82 (2014).
Google Scholar
Möller, I. et al. Wave dissipation and transformation over coastal vegetation under extreme hydrodynamic loading. HYDRALAB IV Jt. user Meet. 1–6 (2014).
Jadhav, R. S., Chen, Q. & Smith, J. M. Spectral distribution of wave energy dissipation by salt marsh vegetation. Coast. Eng. 77, 99 (2013).
Google Scholar
Ozeren, Y., Wren, D. G. & Wu, W. Experimental Investigation of Wave Attenuation through Model and Live Vegetation. J. Waterw. Port Coast. Ocean Eng. 140, 4019 (2014).
Google Scholar
He, F., Chen, J. & Jiang, C. Surface wave attenuation by vegetation with the stem, root and canopy. Coast. Eng. 152, 1 (2019).
Google Scholar
Keulegan, G. H. & Carpenter, L. H. Forces on cylinders and plates in an oscillating fluid. J. Res. Natl. Bur. Stand. 60, 1 (1958).
Google Scholar
Winsemius, H. C., Van Beek, L. P. H., Jongman, B., Ward, P. J. & Bouwman, A. A framework for global river flood risk assessments. Hydrol. Earth Syst. Sci. 17, 1871–1892 (2013).
Google Scholar
Sutton-Grier, A. E., Wowk, K. & Bamford, H. Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy 51, 137–148 (2015).
Google Scholar
Cheong, S. M. et al. Coastal adaptation with ecological engineering. Nat. Clim. Chang. 3, 787–791 (2013).
Google Scholar
Wieselsberger, C. New data on the laws of fluid resistance /. (National Advisory Committee for Aeronautics, 1922).
Borsje, B. W. et al. How ecological engineering can serve in coastal protection. Ecol. Eng. 37, 113–122 (2011).
Google Scholar
Massel, S. R. & Brinkman, R. M. On the determination of directional wave spectra for practical applications. Appl. Ocean Res. 20, 357–374 (1998).
Google Scholar
Klopman, G. & Meer, J. W. Random wave measurements in front of reflective structures. J. Waterw. Port Coast. Ocean Eng. 125, 39–45 (1999).
Google Scholar
Wuytack, T. et al. The potential of biomonitoring of air quality using leaf characteristics of white willow (Salix alba L.). Environ. Monit. Assess. 171, 197–204 (2010).
Google Scholar
Source: Ecology - nature.com