in

Weak effects on growth and cannibalism under fluctuating temperatures in damselfly larvae

  • Vázquez, D. P., Gianoli, E., Morris, W. F. & Bozinovic, F. Ecological and evolutionary impacts of changing climatic variability. Biol. Rev. 92, 22–42. https://doi.org/10.1111/brv.12216 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Marshall, K. E. & Sinclair, B. J. The impacts of repeated cold exposure on insects. J. Exp. Biol. 215, 1607–1613. https://doi.org/10.1242/jeb.059956 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Bale, J. & Hayward, S. Insect overwintering in a changing climate. J. Exp. Biol. 213, 980–994 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kingsolver, J. G. Feeding, growth, and the thermal environment of cabbage white caterpillars, Pieris rapae L. Physiol. Biochem. Zool. 73, 621–628 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stange, E. E. & Ayres, M. P. Climate change impacts: Insects (JohnWiley & Sons, 2010).

    Google Scholar 

  • Chapman, A. D. Numbers of Living Species in Australia and the World: Report for the Department of the Environment and Heritage Canberra, Australia (Department of the Environment and Heritage, 2006).

    Google Scholar 

  • Colinet, H., Sinclair, B. J., Vernon, P. & Renault, D. Insects in fluctuating thermal environments. Annu. Rev. Entomol. 60, 123–140. https://doi.org/10.1146/annurev-ento-010814-021017 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hickling, R., Roy, D. B., Hill, J. K. & Thomas, C. D. A northward shift of range margins in British Odonata. Glob. Change Biol. 11, 502–506. https://doi.org/10.1111/j.1365-2486.2005.00904.x (2005).

    ADS 
    Article 

    Google Scholar 

  • Rumpf, S. B., Hülber, K., Zimmermann, N. E. & Dullinger, S. Elevational rear edges shifted at least as much as leading edges over the last century. Glob. Ecol. Biogeogr. 28, 533–543. https://doi.org/10.1111/geb.12865 (2019).

    Article 

    Google Scholar 

  • Halsch, C. A. et al. Insects and recent climate change. Proc. Natl. Acad. Sci. 118, e2002543117. https://doi.org/10.1073/pnas.2002543117 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCain, C. M. & Garfinkel, C. F. Climate change and elevational range shifts in insects. Curr. Opin. Insect Sci. 47, 111–118. https://doi.org/10.1016/j.cois.2021.06.003 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Angilletta, M. J. Jr. & Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).

    Book 

    Google Scholar 

  • Angilletta, M. J. & Dunham, A. E. The temperature-size rule in ectotherms: Simple evolutionary explanations may not be general. Am. Nat. 162, 332–342. https://doi.org/10.1086/377187 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Jensen, J. L. W. V. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30, 175–193 (1906).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Ruel, J. J. & Ayres, M. P. Jensen’s inequality predicts effects of environmental variation. Trends Ecol. Evol. 14, 361–366 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kingsolver, J. G. & Woods, H. A. Thermal sensitivity of growth and feeding in Manduca sexta Caterpillars. Physiol. Zool. 70, 631–638. https://doi.org/10.1086/515872 (1997).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bale, J. S. et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).

    ADS 
    Article 

    Google Scholar 

  • Robinet, C. & Roques, A. Direct impacts of recent climate warming on insect populations. Integr. Zool. 5, 132–142 (2010).

    PubMed 
    Article 

    Google Scholar 

  • García-Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L. & Kress, W. J. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc. Natl. Acad. Sci. 113, 680–685. https://doi.org/10.1073/pnas.1507681113 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B Biol. Sci. 281, 20132612 (2014).

    Article 

    Google Scholar 

  • Sandehson, D. E. The relation of temperature to the growth of insects. J. Econ. Entomol. 3, 113–140 (1910).

    Article 

    Google Scholar 

  • Cook, W. C. Some Effects of Alternating Temperatures on the Growth and Metabolism of Cutworm Larvae (Oxford University Press, 1927).

    Google Scholar 

  • Kingsolver, J. G., Ragland, G. J. & Diamond, S. E. Evolution in a constant environment: Thermal fluctuations and thermal sensitivity of laboratory and field populations of Manduca sexta. Evolution 63, 537–541. https://doi.org/10.1111/j.1558-5646.2008.00568.x (2009).

    Article 
    PubMed 

    Google Scholar 

  • Eldridge, W. H., Sweeney, B. W. & Law, J. M. Fish growth, physiological stress, and tissue condition in response to rate of temperature change during cool or warm diel thermal cycles. Can. J. Fish. Aquat. Sci. 72, 1527–1537 (2015).

    CAS 
    Article 

    Google Scholar 

  • Bernhardt, J. R., Sunday, J. M., Thompson, P. L. & O’Connor, M. I. Nonlinear averaging of thermal experience predicts population growth rates in a thermally variable environment. Proc. R. Soc. B Biol. Sci. 285, 20181076. https://doi.org/10.1098/rspb.2018.1076 (2018).

    Article 

    Google Scholar 

  • Morissette, J., Swart, S., Maccormack, T. J., Currie, S. & Morash, A. J. Thermal variation near the thermal optimum does not affect the growth, metabolism or swimming performance in wild Atlantic salmon Salmo salar. J. Fish Biol. 98, 1585–1589. https://doi.org/10.1111/jfb.14348 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bozinovic, F. et al. The mean and variance of environmental temperature interact to determine physiological tolerance and fitness. Physiol. Biochem. Zool. 84, 543–552 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Boggs, C. L. The fingerprints of global climate change on insect populations. Curr. Opin. Insect Sci. 17, 69–73. https://doi.org/10.1016/j.cois.2016.07.004 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Lemoine, N. P., Drews, W. A., Burkepile, D. E. & Parker, J. D. Increased temperature alters feeding behavior of a generalist herbivore. Oikos 122, 1669–1678. https://doi.org/10.1111/j.1600-0706.2013.00457.x (2013).

    Article 

    Google Scholar 

  • Vangansbeke, D. et al. Prey consumption by phytoseiid spider mite predators as affected by diurnal temperature variations. Biocontrol 60, 595–603 (2015).

    Article 

    Google Scholar 

  • Davies, C., Coetzee, M. & Lyons, C. L. Effect of stable and fluctuating temperatures on the life history traits of Anopheles arabiensis and An. quadriannulatus under conditions of inter-and intra-specific competition. Parasit. Vectors 9, 1–9 (2016).

    Article 

    Google Scholar 

  • Delava, E., Fleury, F. & Gibert, P. Effects of daily fluctuating temperatures on the Drosophila-Leptopilina boulardi parasitoid association. J. Therm. Biol. 60, 95–102 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Amarasekare, P. & Coutinho, R. M. Effects of temperature on intraspecific competition in ectotherms. Am. Nat. 184, E50–E65. https://doi.org/10.1086/677386 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Jiang, L. & Morin, P. J. Temperature-dependent interactions explain unexpected responses to environmental warming in communities of competitors. J. Anim. Ecol. 73, 569–576 (2004).

    Article 

    Google Scholar 

  • Novich, R. A., Erickson, E. K., Kalinoski, R. M. & DeLong, J. P. The temperature independence of interaction strength in a sit-and-wait predator. Ecosphere 5, 1–9 (2014).

    Article 

    Google Scholar 

  • Fox, L. R. Cannibalism in natural populations. Annu. Rev. Ecol. Syst. 6, 87–106 (1975).

    Article 

    Google Scholar 

  • Polis, G. A. The evolution and dynamics of intraspecific predation. Annu. Rev. Ecol. Syst. 12, 225–251 (1981).

    Article 

    Google Scholar 

  • Nishimura, K. & Isoda, Y. Evolution of cannibalism: Referring to costs of cannibalism. J. Theor. Biol. 226, 293–302. https://doi.org/10.1016/j.jtbi.2003.09.007 (2004).

    ADS 
    MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Crumrine, P. W. Body size, temperature, and seasonal differences in size structure influence the occurrence of cannibalism in larvae of the migratory dragonfly, Anax junius. Aquat. Ecol. 44, 761–770 (2010).

    Article 

    Google Scholar 

  • Reglero, P., Urtizberea, A., Torres, A. P., Alemany, F. & Fiksen, Ø. Cannibalism among size classes of larvae may be a substantial mortality component in tuna. Mar. Ecol. Prog. Ser. 433, 205–219 (2011).

    ADS 
    Article 

    Google Scholar 

  • Nilsson-Örtman, V., Stoks, R. & Johansson, F. Competitive interactions modify the temperature dependence of damselfly growth rates. Ecology 95, 1394–1406. https://doi.org/10.1890/13-0875.1 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Pritchard, G. & Leggott, M. Temperature, incubation rates and the origins of dragonflies. Adv. Odonatol. 3, 121–126 (1987).

    Google Scholar 

  • Hassall, C. & Thompson, D. J. The effects of environmental warming on Odonata: A review. Int. J. Odonatol. 11, 131–153 (2008).

    Article 

    Google Scholar 

  • Johansson, F. & Crowley, P. H. Larval cannibalism and population dynamics of dragonflies. In Aquatic Insects: Challenges to Populations 36–54 (CABI, 2008).

  • Rudolf, V. H. W. & Rasmussen, N. L. Ontogenetic functional diversity: Size structure of a keystone predator drives functioning of a complex ecosystem. Ecology 94, 1046–1056 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Hyeun-Ji, L. & Johansson, F. Compensating for a bad start: Compensatory growth across life stages in an organism with a complex life cycle. Can. J. Zool. 94, 41–47 (2016).

    Article 

    Google Scholar 

  • Sokolovska, N., Rowe, L. & Johansson, F. Fitness and body size in mature odonates. Ecol. Entomol. 25, 239–248. https://doi.org/10.1046/j.1365-2311.2000.00251.x (2000).

    Article 

    Google Scholar 

  • Karl, T. R. Modern global climate change. Science 302, 1719–1723. https://doi.org/10.1126/science.1090228 (2003).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Meehl, G. A. et al. Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).

    Google Scholar 

  • Meehl, G. A. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997. https://doi.org/10.1126/science.1098704 (2004).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Khelifa, R. Spatiotemporal Pattern of Phenology Across Geographic Gradients in Insects, in Chapter 1 (Geographic Gradients in Climate Change Response Explained by Non-linear Thermal-Performance Curves) (University of Zurich, 2017).

    Google Scholar 

  • Boudot, J. P. & Kalkman, V. Atlas of the European Dragonflies and Damselflies (KNNV Publishing, 2015).

    Google Scholar 

  • Norling, U. Growth, winter preparations and timing of emergence in temperate zone Odonata: Control by a succession of larval response patterns. Int. J. Odonatol. 24, 1–36 (2021).

    Article 

    Google Scholar 

  • Sniegula, S. & Johansson, F. Photoperiod affects compensating developmental rate across latitudes in the damselfly Lestes sponsa. Ecol. Entomol. 35, 149–157. https://doi.org/10.1111/j.1365-2311.2009.01164.x (2010).

    Article 

    Google Scholar 

  • Sniegula, S., Golab, M. J. & Johansson, F. Size-mediated priority and temperature effects on intra-cohort competition and cannibalism in a damselfly. J. Anim. Ecol. 88, 637–648. https://doi.org/10.1111/1365-2656.12947 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. https://doi.org/10.1038/nmeth.2089 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benke, A. C. A method for comparing individual growth rates of aquatic insects with special reference to the Odonata. Ecology 51, 328–331 (1970).

    Article 

    Google Scholar 

  • Nilsson-Örtman, V., Stoks, R., De Block, M. & Johansson, F. Generalists and specialists along a latitudinal transect: Patterns of thermal adaptation in six species of damselflies. Ecology 93, 1340–1352. https://doi.org/10.1890/11-1910.1 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Eklund, A. et al. Sveriges Framtida Klimat: Underlag Till Dricksvattenutredningen (SMHI, 2015).

    Google Scholar 

  • McPeek, M. A. Determination of species composition in the Enallagma damselfly assemblages of permanent lakes. Ecology 71, 83–98. https://doi.org/10.2307/1940249 (1990).

    Article 

    Google Scholar 

  • Kirillin, G. et al. FLake-global: Online lake model with worldwide coverage. Environ. Model. Softw. 26, 683–684. https://doi.org/10.1016/j.envsoft.2010.12.004 (2011).

    Article 

    Google Scholar 

  • SMHI. Advanced Climate Change Scenario Service. https://www.smhi.se.

  • R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • Suhling, F., Suhling, I. & Richter, O. Temperature response of growth of larval dragonflies–An overview. Int. J. Odonatol. 18, 15–30 (2015).

    Article 

    Google Scholar 

  • Padfield, D., O’Sullivan, H. & Pawar, S. rTPC and nls.multstart: A new pipeline to fit thermal performance curves in R. Methods Ecol. Evol. 1, 1. https://doi.org/10.1111/2041-210X.13585 (2021).

    Article 

    Google Scholar 

  • Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932).

    CAS 
    Article 

    Google Scholar 

  • Hemmingsen, A. Reports of the Steno Memorial Hospital and Nordisk Insulin Laboratorium. Energy Metab. Relat. Body Size Respir. Surf. Evol. 9, 6–110 (1960).

    Google Scholar 

  • Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. 108, 10591–10596 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Logan, J. D., Wolesensky, W. & Joern, A. Temperature-dependent phenology and predation in arthropod systems. Ecol. Model. 196, 471–482. https://doi.org/10.1016/j.ecolmodel.2006.02.034 (2006).

    Article 

    Google Scholar 

  • Pink, M. & Abrahams, M. V. Temperature and its impact on predation risk within aquatic ecosystems. Can. J. Fish. Aquat. Sci. 73, 869–876. https://doi.org/10.1139/cjfas-2015-0302 (2016).

    Article 

    Google Scholar 

  • DeAngelis, D., Cox, D. & Coutant, C. Cannibalism and size dispersal in young-of-the-year largemouth bass: Experiment and model. Ecol. Model. 8, 133–148 (1980).

    Article 

    Google Scholar 

  • Fagan, W. F. & Odell, G. M. Size-dependent cannibalism in praying mantids: Using biomass flux to model size-structured populations. Am. Nat. 147, 230–268 (1996).

    Article 

    Google Scholar 

  • Dong, Q. & Deangelis, D. L. Consequences of cannibalism and competition for food in a smallmouth bass population: An individual-based modeling study. Trans. Am. Fish. Soc. 127, 174–191 (1998).

    Article 

    Google Scholar 

  • Verheyen, J. & Stoks, R. Temperature variation makes an ectotherm more sensitive to global warming unless thermal evolution occurs. J. Anim. Ecol. 88, 624–636. https://doi.org/10.1111/1365-2656.12946 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Starr, S. M. & McIntyre, N. E. Effects of water temperature under projected climate change on the development and survival of Enallagma civile (Odonata: Coenagrionidae). Environ. Entomol. 49, 230–237. https://doi.org/10.1093/ee/nvz138 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Culler, L. E., McPeek, M. A. & Ayres, M. P. Predation risk shapes thermal physiology of a predaceous damselfly. Oecologia 176, 653–660. https://doi.org/10.1007/s00442-014-3058-8 (2014).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Dokulil, M. T. et al. Increasing maximum lake surface temperature under climate change. Clim. Change https://doi.org/10.1007/s10584-021-03085-1 (2021).

    Article 

    Google Scholar 

  • Merritt, R. W. & Cummins, K. W. An Introduction to the Aquatic Insects of North America 2nd edn. (Kendall/Hunt Publishing Company, 1984).

    Google Scholar 

  • Verdonschot, R. & Peeters, E. T. Preference of larvae of Enallagma cyathigerum (Odonata: Coenagrionidae) for habitats of varying structural complexity. Eur. J. Entomol. 109, 229–234 (2012).

    Article 

    Google Scholar 

  • McCarty, J. P., Wolfenbarger, L. L. & Wilson, J. A. eLS 1–13 (Wiley, 2017).

    Book 

    Google Scholar 

  • Holzmann, K. L. Challenges in a Changing Climate: The Effect of Temperature Variation on Growth and Competition in Damselflies Independent thesis Advanced level (degree of Master (Two Years) thesis, Uppsala University. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-467582 (2022).


  • Source: Ecology - nature.com

    The response of wheat and its microbiome to contemporary and historical water stress in a field experiment

    New hardware offers faster computation for artificial intelligence, with much less energy