Yao C-L, Somero GN. The impact of ocean warming on marine organisms. Chin Sci Bull. 2014;59:468–79.
Frölicher TL, Fischer EM, Gruber N. Marine heatwaves under global warming. Nature. 2018;560:360–4.
Google Scholar
Bindoff NL, Cheung WWL, Kairo JG, Arístegui J, Guinder VA, Hallberg R, et al. Changing ocean, marine ecosystems, and dependent communities. Switzerland: Intergovernmental Panel on Climate Change (IPCC); 2019.
Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP, Conley DJ, et al. Declining oxygen in the global ocean and coastal waters. Science. 2018;359:eaam7240.
Google Scholar
Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, et al. Long-term climate change: projections, commitments and irreversibility. In: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. United Kingdom and New York, NY, USA: Cambridge; 2013.
Mackenzie BR, Schiedek D. Daily ocean monitoring since the 1860s shows record warming of northern European seas. Glob Change Biol. 2007;13:1335–47.
Gruner DS, Bracken MES, Berger SA, Eriksson BK, Gamfeldt L, Matthiessen B, et al. Effects of experimental warming on biodiversity depend on ecosystem type and local species composition. Oikos. 2017;126:8–17.
Forsman A, Berggren H, Åström M, Larsson P. To what extent can existing research help project climate change impacts on biodiversity in aquatic environments? A review of methodological approaches. Multidiscipl Digital Publishing Inst. 2016;4:75.
HELCOM. Eutrophication in the Baltic Sea—An integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region. Baltic Sea Environ Proc. 2009. Report No.: 115B.
Carstensen J, Andersen JH, Gustafsson BG, Conley DJ. Deoxygenation of the Baltic Sea during the last century. Proc Natl Acad Sci USA. 2014;111:5628–33.
Google Scholar
Broman E, Sjostedt J, Pinhassi J, Dopson M. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism. Microbiome. 2017;5:96.
Google Scholar
Schmidtko S, Stramma L, Visbeck M. Decline in global oceanic oxygen content during the past five decades. Nature. 2017;542:335–9.
Google Scholar
Brewer PG, Peltzer ET. Depth perception: the need to report ocean biogeochemical rates as functions of temperature, not depth. Philos Trans R Soc Mathemat Phys Eng. 2017;375:20160319.
Laruelle GG, Cai W-J, Hu X, Gruber N, Mackenzie FT, Regnier P. Continental shelves as a variable but increasing global sink for atmospheric carbon dioxide. Nat Commun. 2018;9:454.
Google Scholar
Gilbert D, Rabalais NN, Díaz RJ, Zhang J. Evidence for greater oxygen decline rates in the coastal ocean than in the open ocean. Biogeosciences. 2010;7:2283–96.
Google Scholar
Kauppi L, Norkko J, Ikonen J, Norkko A. Seasonal variability in ecosystem functions: quantifying the contribution of invasive species to nutrient cycling in coastal ecosystems. Marine Ecol Progr Series. 2017;572:193–207.
Google Scholar
Lu X, Zhou F, Chen F, Lao Q, Zhu Q, Meng Y, et al. Spatial and seasonal variations of sedimentary organic matter in a subtropical bay: implication for human interventions. Int J Environ Res Public Health. 2020;17:1362.
Google Scholar
Turner JT. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Progr Oceanograph. 2015;130:205–48.
Gupta A, Gupta R, Singh RL. Microbes and environment. In: Singh R (eds) Principles and Applications of Environmental Biotechnology for a Sustainable Future. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Singapore; 2017:43–84.
American Society for Microbiology. Microbes and Climate Change: Report on an American Academy of Microbiology and American Geophysical Union Colloquium held in Washington, DC, in March 2016. Washington (DC): American Society for Microbiology; 2017.
Sarmento H, Montoya JM, Vazquez-Dominguez E, Vaque D, Gasol JM. Warming effects on marine microbial food web processes: how far can we go when it comes to predictions? Philos Trans R Soc B Biol Sci. 2010;365:2137–49.
IPCC. Climate Change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press (In Press); 2021.
Moberg A, Humborg C. Second assessment of climate change for the Baltic Sea basin. Second assessment of climate change for the Baltic Sea basin. Berlin Heidelberg: Springer; 2008.
Humborg C, Geibel MC, Sun X, McCrackin M, Mörth C-M, Stranne C, et al. High emissions of carbon dioxide and methane from the coastal Baltic Sea at the end of a summer heat wave. Front Marine Sci. 2019;6:493.
Smith TP, Thomas TJH, García-Carreras B, Sal S, Yvon-Durocher G, Bell T, et al. Community-level respiration of prokaryotic microbes may rise with global warming. Nat Commun. 2019;10:5124.
Google Scholar
Broman E, Li L, Fridlund J, Svensson F, Legrand C, Dopson M. Spring and late summer phytoplankton biomass impact on the coastal sediment microbial community structure. Microbial Ecol. 2018;77:288–303.
Gao Y, Cornwell JC, Stoecker DK, Owens MS. Influence of cyanobacteria blooms on sediment biogeochemistry and nutrient fluxes. Limnol Oceanograph. 2014;59:959–71.
Google Scholar
Sawicka JE, Brüchert V. Annual variability and regulation of methane and sulfate fluxes in Baltic Sea estuarine sediments. Biogeosciences. 2017;14:325–39.
Google Scholar
Berner RA. A new geochemical classification of sedimentary environments. J Sediment Res. 1981;51:359–65.
Google Scholar
Nealson KH. Sediment bacteria: who’s there, what are they doing, and what’s new? Ann Rev Earth Planet Sci. 1997;25:403–34.
Google Scholar
EPA. Quality criteria for water. Washington D.C., USA: Office of Water Regulations and Standards; 1986.
Tamme R, Hiiesalu I, Laanisto L, Szava-Kovats R, Pärtel M. Environmental heterogeneity, species diversity and co-existence at different spatial scales. J Veget Sci. 2010;21:796–801.
Klier J, Dellwig O, Leipe T, Jürgens K, Herlemann DPR. Benthic bacterial community composition in the oligohaline-marine transition of surface sediments in the Baltic Sea based on rRNA analysis. Front Microbiol. 2018;9:236.
Google Scholar
Broman E, Sachpazidou V, Pinhassi J, Dopson M. Oxygenation of hypoxic coastal Baltic Sea sediments impacts on chemistry, microbial community composition, and metabolism. Front Microbiol. 2017;8:2453.
Google Scholar
Orlygsson J, Kristjansson JK. The family Hydrogenophilaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 859–68.
Liu Z, Frigaard NU, Vogl K, Iino T, Ohkuma M, Overmann J, et al. Complete genome of Ignavibacterium album, a metabolically versatile, flagellated, facultative anaerobe from the phylum Chlorobi. Front Microbiol. 2012;3:185.
Google Scholar
Watanabe M, Kojima H, Fukui M. Desulfoplanes formicivorans gen. nov., sp. nov., a novel sulfate-reducing bacterium isolated from a blackish meromictic lake, and emended description of the family Desulfomicrobiaceae. Int J Syst Evol Microbiol. 2015;65:1902–7.
Google Scholar
Galushko A, Desulfocapsaceae JK. Bergey’s Manual of Systematics of Archaea and Bacteria. Hoboken, New Jersey: Wiley; 2015. p. 1–6.
Dyksma S, Bischof K, Fuchs BM, Hoffmann K, Meier D, Meyerdierks A, et al. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME J. 2016;10:1939–53.
Google Scholar
Ye Q, Wu Y, Zhu Z, Wang X, Li Z, Zhang J. Bacterial diversity in the surface sediments of the hypoxic zone near the Changjiang Estuary and in the east China Sea. Microbiologyopen. 2016;5:323–39.
Google Scholar
Fahrbach M, Kuever J, Remesch M, Huber BE, Kampfer P, Dott W, et al. Steroidobacter denitrificans gen. nov., sp. nov., a steroidal hormone-degrading gammaproteobacterium. Int J Syst Evol Microbiol. 2008;58:2215–23.
Google Scholar
Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y, Takai K, et al. Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Front Microbiol. 2017;8:682.
Google Scholar
Reyes C, Schneider D, Thürmer A, Kulkarni A, Lipka M, Sztejrenszus SY, et al. Potentially active iron, sulfur, and sulfate reducing bacteria in Skagerrak and Bothnian bay sediments. Geomicrobiol J. 2017;34:840–50.
Google Scholar
Lovley DR, Roden EE, Phillips EJP, Woodward JC. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Marine Geol. 1993;113:41–53.
Google Scholar
Funkey CP, Conley DJ, Reuss NS, Humborg C, Jilbert T, Slomp CP. Hypoxia sustains cyanobacteria blooms in the Baltic sea. Environ Sci Technol. 2014;48:2598–602.
Google Scholar
Boden R, Hutt LP, Rae AW. Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the ‘Proteobacteria’, and four new families within the orders Nitrosomonadales and Rhodocyclales. Int J Syst Evol Microbiol. 2017;67:1191–205.
Google Scholar
Howarth R, Unz RF, Seviour EM, Seviour RJ, Blackall LL, Pickup RW, et al. Phylogenetic relationships of filamentous sulfur bacteria (Thiothrix spp. and Eikelboom type 021N bacteria) isolated from waste water treatment plants and description of Thiothrix eikelboomii sp. nov., Thiothrix unzii sp. nov., Thiothrix fructosivorans sp. nov. and Thiothrix defluvii sp. nov. Int J Syst Evol Microbiol. 1999;49:1817–27.
Google Scholar
Imhoff JF. The family Chromatiaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes: Gammaproteobacteria. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 151–78.
Bižić M, Klintzsch T, Ionescu D, Hindiyeh MY, Günthel M, Muro-Pastor AM, et al. Aquatic and terrestrial cyanobacteria produce methane. Sci Adv. 2020;6:eaax5343.
Google Scholar
Rana K, Rana N, Singh B. Chapter 10 – Applications of sulfur oxidizing bacteria. In: Salwan R, Sharma V, editors. Physiological and Biotechnological Aspects of Extremophiles. London, UK: Academic Press; 2020. p. 131–6.
Zhuang W-Q, Yi S, Bill M, Brisson VL, Feng X, Men Y, et al. Incomplete Wood-Ljungdahl pathway facilitates one-carbon metabolism in organohalide-respiring Dehalococcoides mccartyi. Proc Natl Acad Sci USA. 2014;111:6419–24.
Google Scholar
Roncarati D, Scarlato V. Regulation of heat-shock genes in bacteria: from signal sensing to gene expression output. FEMS Microbiol Rev. 2017;41:549–74.
Google Scholar
Nagar SD, Aggarwal B, Joon S, Bhatnagar R, Bhatnagar S. A network biology approach to decipher stress response in bacteria using Escherichia coli as a model. OMICS. 2016;20:310–24.
Google Scholar
Jonas K, Liu J, Chien P, Laub MT. Proteotoxic stress induces a cell-cycle arrest by stimulating lon to degrade the replication initiator DnaA. Cell. 2013;154:623–36.
Google Scholar
Miss P. Oskarshamn power plant and Clab—Annual report over the radioecological environmental control under 2020. Reg.Nr.2021-02902. Made public 2021-03-21 (In Swedish). Oskarshamn, Sweden; 2021.
Lindh MV, Figueroa D, Sjostedt J, Baltar F, Lundin D, Andersson A, et al. Transplant experiments uncover Baltic Sea basin-specific responses in bacterioplankton community composition and metabolic activities. Front Microbiol. 2015;6:223.
Google Scholar
R Core Team. R: A language and environment for statistical computing. Vienna, Austria: Foundation for Statistical Computing; 2018.
Source: Ecology - nature.com