in

Weakened resilience of benthic microbial communities in the face of climate change

  • Yao C-L, Somero GN. The impact of ocean warming on marine organisms. Chin Sci Bull. 2014;59:468–79.

    Google Scholar 

  • Frölicher TL, Fischer EM, Gruber N. Marine heatwaves under global warming. Nature. 2018;560:360–4.

    PubMed 

    Google Scholar 

  • Bindoff NL, Cheung WWL, Kairo JG, Arístegui J, Guinder VA, Hallberg R, et al. Changing ocean, marine ecosystems, and dependent communities. Switzerland: Intergovernmental Panel on Climate Change (IPCC); 2019.

  • Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP, Conley DJ, et al. Declining oxygen in the global ocean and coastal waters. Science. 2018;359:eaam7240.

    PubMed 

    Google Scholar 

  • Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, et al. Long-term climate change: projections, commitments and irreversibility. In: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. United Kingdom and New York, NY, USA: Cambridge; 2013.

  • Mackenzie BR, Schiedek D. Daily ocean monitoring since the 1860s shows record warming of northern European seas. Glob Change Biol. 2007;13:1335–47.

    Google Scholar 

  • Gruner DS, Bracken MES, Berger SA, Eriksson BK, Gamfeldt L, Matthiessen B, et al. Effects of experimental warming on biodiversity depend on ecosystem type and local species composition. Oikos. 2017;126:8–17.

    Google Scholar 

  • Forsman A, Berggren H, Åström M, Larsson P. To what extent can existing research help project climate change impacts on biodiversity in aquatic environments? A review of methodological approaches. Multidiscipl Digital Publishing Inst. 2016;4:75.

    Google Scholar 

  • HELCOM. Eutrophication in the Baltic Sea—An integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region. Baltic Sea Environ Proc. 2009. Report No.: 115B.

  • Carstensen J, Andersen JH, Gustafsson BG, Conley DJ. Deoxygenation of the Baltic Sea during the last century. Proc Natl Acad Sci USA. 2014;111:5628–33.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Broman E, Sjostedt J, Pinhassi J, Dopson M. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism. Microbiome. 2017;5:96.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmidtko S, Stramma L, Visbeck M. Decline in global oceanic oxygen content during the past five decades. Nature. 2017;542:335–9.

    CAS 
    PubMed 

    Google Scholar 

  • Brewer PG, Peltzer ET. Depth perception: the need to report ocean biogeochemical rates as functions of temperature, not depth. Philos Trans R Soc Mathemat Phys Eng. 2017;375:20160319.

    Google Scholar 

  • Laruelle GG, Cai W-J, Hu X, Gruber N, Mackenzie FT, Regnier P. Continental shelves as a variable but increasing global sink for atmospheric carbon dioxide. Nat Commun. 2018;9:454.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gilbert D, Rabalais NN, Díaz RJ, Zhang J. Evidence for greater oxygen decline rates in the coastal ocean than in the open ocean. Biogeosciences. 2010;7:2283–96.

    CAS 

    Google Scholar 

  • Kauppi L, Norkko J, Ikonen J, Norkko A. Seasonal variability in ecosystem functions: quantifying the contribution of invasive species to nutrient cycling in coastal ecosystems. Marine Ecol Progr Series. 2017;572:193–207.

    CAS 

    Google Scholar 

  • Lu X, Zhou F, Chen F, Lao Q, Zhu Q, Meng Y, et al. Spatial and seasonal variations of sedimentary organic matter in a subtropical bay: implication for human interventions. Int J Environ Res Public Health. 2020;17:1362.

    CAS 
    PubMed Central 

    Google Scholar 

  • Turner JT. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Progr Oceanograph. 2015;130:205–48.

    Google Scholar 

  • Gupta A, Gupta R, Singh RL. Microbes and environment. In: Singh R (eds) Principles and Applications of Environmental Biotechnology for a Sustainable Future. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Singapore; 2017:43–84.

  • American Society for Microbiology. Microbes and Climate Change: Report on an American Academy of Microbiology and American Geophysical Union Colloquium held in Washington, DC, in March 2016. Washington (DC): American Society for Microbiology; 2017.

  • Sarmento H, Montoya JM, Vazquez-Dominguez E, Vaque D, Gasol JM. Warming effects on marine microbial food web processes: how far can we go when it comes to predictions? Philos Trans R Soc B Biol Sci. 2010;365:2137–49.

    Google Scholar 

  • IPCC. Climate Change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press (In Press); 2021.

  • Moberg A, Humborg C. Second assessment of climate change for the Baltic Sea basin. Second assessment of climate change for the Baltic Sea basin. Berlin Heidelberg: Springer; 2008.

    Google Scholar 

  • Humborg C, Geibel MC, Sun X, McCrackin M, Mörth C-M, Stranne C, et al. High emissions of carbon dioxide and methane from the coastal Baltic Sea at the end of a summer heat wave. Front Marine Sci. 2019;6:493.

    Google Scholar 

  • Smith TP, Thomas TJH, García-Carreras B, Sal S, Yvon-Durocher G, Bell T, et al. Community-level respiration of prokaryotic microbes may rise with global warming. Nat Commun. 2019;10:5124.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Broman E, Li L, Fridlund J, Svensson F, Legrand C, Dopson M. Spring and late summer phytoplankton biomass impact on the coastal sediment microbial community structure. Microbial Ecol. 2018;77:288–303.

    Google Scholar 

  • Gao Y, Cornwell JC, Stoecker DK, Owens MS. Influence of cyanobacteria blooms on sediment biogeochemistry and nutrient fluxes. Limnol Oceanograph. 2014;59:959–71.

    CAS 

    Google Scholar 

  • Sawicka JE, Brüchert V. Annual variability and regulation of methane and sulfate fluxes in Baltic Sea estuarine sediments. Biogeosciences. 2017;14:325–39.

    CAS 

    Google Scholar 

  • Berner RA. A new geochemical classification of sedimentary environments. J Sediment Res. 1981;51:359–65.

    CAS 

    Google Scholar 

  • Nealson KH. Sediment bacteria: who’s there, what are they doing, and what’s new? Ann Rev Earth Planet Sci. 1997;25:403–34.

    CAS 

    Google Scholar 

  • EPA. Quality criteria for water. Washington D.C., USA: Office of Water Regulations and Standards; 1986.

    Google Scholar 

  • Tamme R, Hiiesalu I, Laanisto L, Szava-Kovats R, Pärtel M. Environmental heterogeneity, species diversity and co-existence at different spatial scales. J Veget Sci. 2010;21:796–801.

    Google Scholar 

  • Klier J, Dellwig O, Leipe T, Jürgens K, Herlemann DPR. Benthic bacterial community composition in the oligohaline-marine transition of surface sediments in the Baltic Sea based on rRNA analysis. Front Microbiol. 2018;9:236.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Broman E, Sachpazidou V, Pinhassi J, Dopson M. Oxygenation of hypoxic coastal Baltic Sea sediments impacts on chemistry, microbial community composition, and metabolism. Front Microbiol. 2017;8:2453.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Orlygsson J, Kristjansson JK. The family Hydrogenophilaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 859–68.

  • Liu Z, Frigaard NU, Vogl K, Iino T, Ohkuma M, Overmann J, et al. Complete genome of Ignavibacterium album, a metabolically versatile, flagellated, facultative anaerobe from the phylum Chlorobi. Front Microbiol. 2012;3:185.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Watanabe M, Kojima H, Fukui M. Desulfoplanes formicivorans gen. nov., sp. nov., a novel sulfate-reducing bacterium isolated from a blackish meromictic lake, and emended description of the family Desulfomicrobiaceae. Int J Syst Evol Microbiol. 2015;65:1902–7.

    CAS 
    PubMed 

    Google Scholar 

  • Galushko A, Desulfocapsaceae JK. Bergey’s Manual of Systematics of Archaea and Bacteria. Hoboken, New Jersey: Wiley; 2015. p. 1–6.

    Google Scholar 

  • Dyksma S, Bischof K, Fuchs BM, Hoffmann K, Meier D, Meyerdierks A, et al. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME J. 2016;10:1939–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ye Q, Wu Y, Zhu Z, Wang X, Li Z, Zhang J. Bacterial diversity in the surface sediments of the hypoxic zone near the Changjiang Estuary and in the east China Sea. Microbiologyopen. 2016;5:323–39.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fahrbach M, Kuever J, Remesch M, Huber BE, Kampfer P, Dott W, et al. Steroidobacter denitrificans gen. nov., sp. nov., a steroidal hormone-degrading gammaproteobacterium. Int J Syst Evol Microbiol. 2008;58:2215–23.

    CAS 
    PubMed 

    Google Scholar 

  • Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y, Takai K, et al. Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Front Microbiol. 2017;8:682.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Reyes C, Schneider D, Thürmer A, Kulkarni A, Lipka M, Sztejrenszus SY, et al. Potentially active iron, sulfur, and sulfate reducing bacteria in Skagerrak and Bothnian bay sediments. Geomicrobiol J. 2017;34:840–50.

    CAS 

    Google Scholar 

  • Lovley DR, Roden EE, Phillips EJP, Woodward JC. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Marine Geol. 1993;113:41–53.

    CAS 

    Google Scholar 

  • Funkey CP, Conley DJ, Reuss NS, Humborg C, Jilbert T, Slomp CP. Hypoxia sustains cyanobacteria blooms in the Baltic sea. Environ Sci Technol. 2014;48:2598–602.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boden R, Hutt LP, Rae AW. Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the ‘Proteobacteria’, and four new families within the orders Nitrosomonadales and Rhodocyclales. Int J Syst Evol Microbiol. 2017;67:1191–205.

    CAS 
    PubMed 

    Google Scholar 

  • Howarth R, Unz RF, Seviour EM, Seviour RJ, Blackall LL, Pickup RW, et al. Phylogenetic relationships of filamentous sulfur bacteria (Thiothrix spp. and Eikelboom type 021N bacteria) isolated from waste water treatment plants and description of Thiothrix eikelboomii sp. nov., Thiothrix unzii sp. nov., Thiothrix fructosivorans sp. nov. and Thiothrix defluvii sp. nov. Int J Syst Evol Microbiol. 1999;49:1817–27.

    CAS 

    Google Scholar 

  • Imhoff JF. The family Chromatiaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes: Gammaproteobacteria. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 151–78.

  • Bižić M, Klintzsch T, Ionescu D, Hindiyeh MY, Günthel M, Muro-Pastor AM, et al. Aquatic and terrestrial cyanobacteria produce methane. Sci Adv. 2020;6:eaax5343.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rana K, Rana N, Singh B. Chapter 10 – Applications of sulfur oxidizing bacteria. In: Salwan R, Sharma V, editors. Physiological and Biotechnological Aspects of Extremophiles. London, UK: Academic Press; 2020. p. 131–6.

    Google Scholar 

  • Zhuang W-Q, Yi S, Bill M, Brisson VL, Feng X, Men Y, et al. Incomplete Wood-Ljungdahl pathway facilitates one-carbon metabolism in organohalide-respiring Dehalococcoides mccartyi. Proc Natl Acad Sci USA. 2014;111:6419–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roncarati D, Scarlato V. Regulation of heat-shock genes in bacteria: from signal sensing to gene expression output. FEMS Microbiol Rev. 2017;41:549–74.

    CAS 
    PubMed 

    Google Scholar 

  • Nagar SD, Aggarwal B, Joon S, Bhatnagar R, Bhatnagar S. A network biology approach to decipher stress response in bacteria using Escherichia coli as a model. OMICS. 2016;20:310–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jonas K, Liu J, Chien P, Laub MT. Proteotoxic stress induces a cell-cycle arrest by stimulating lon to degrade the replication initiator DnaA. Cell. 2013;154:623–36.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miss P. Oskarshamn power plant and Clab—Annual report over the radioecological environmental control under 2020. Reg.Nr.2021-02902. Made public 2021-03-21 (In Swedish). Oskarshamn, Sweden; 2021.

  • Lindh MV, Figueroa D, Sjostedt J, Baltar F, Lundin D, Andersson A, et al. Transplant experiments uncover Baltic Sea basin-specific responses in bacterioplankton community composition and metabolic activities. Front Microbiol. 2015;6:223.

    PubMed 
    PubMed Central 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. Vienna, Austria: Foundation for Statistical Computing; 2018.

    Google Scholar 


  • Source: Ecology - nature.com

    MIT Center for Real Estate launches the Asia Real Estate Initiative

    Toward batteries that pack twice as much energy per pound