in

West Nile virus transmission potential in Portugal

  • 1.

    Granwehr, B. P. et al. West Nile virus: Where are we now? Lancet. Infect. Dis. 4, 547–556 (2004).

    PubMed 

    Google Scholar 

  • 2.

    Campbell, G. L., Marfin, A. A., Lanciotti, R. S. & Gubler, D. J. West Nile virus. Lancet. Infect. Dis. 2, 519–529 (2002).

    PubMed 

    Google Scholar 

  • 3.

    Petersen, L. R., Brault, A. C. & Nasci, R. S. West Nile virus: Review of the literature. JAMA. 310, 308–315 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Gamino, V. & Höfle, U. Pathology and tissue tropism of natural West Nile virus infection in birds: A review. Vet. Res. 44, 39 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Bunning, M. L. et al. Experimental infection of horses with West Nile virus. Emerg. Infect. Dis. 8, 380-386 (2002).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Hayes, E. B. et al. Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg. Infect. Dis. 11, 1174–1179 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Saiz, J.-C. Animal and Human Vaccines against West Nile Virus. Pathogens. 9, 1073 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Rizzoli, A. et al. Parasites and wildlife in a changing world: The vector-host- pathogen interaction as a learning case. Int. J. Parasitology: Parasites. Wildl. 9, 394–401 (2019).

    Google Scholar 

  • 9.

    Wang, Y., Yim, S. H. L., Yang, Y. & Morin, C. W. The effect of urbanization and climate change on the mosquito population in the Pearl River Delta region of China. Int. J. Biometeorol. 64, 501–512 (2020).

    PubMed 

    Google Scholar 

  • 10.

    Braack, L., Gouveia de Almeida, A. P., Cornel, A. J., Swanepoel, R. & de Jager, C. Mosquito-borne arboviruses of African origin: Review of key viruses and vectors. Parasites. Vectors. 11, 29 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Johnson, N. et al. Emerging mosquito-borne threats and the response from european and eastern mediterranean countries. Int. J. Environ. Res. Public. Health. 15, 2775 (2018).

    PubMed Central 

    Google Scholar 

  • 12.

    Lourenço, J. et al. Epidemiological and ecological determinants of Zika virus transmission in an urban setting. Elife. 6, e29820 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Giovanetti, M. et al. Genomic and Epidemiological Surveillance of Zika Virus in the Amazon Region. Cell Rep. 30, 2275–2283.e7 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Faria, N. R. et al. Genomic and epidemiological monitoring of yellow fever virus transmission potential. Science. 361, 894–899 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Wu, J. T., Peak, C. M., Leung, G. M. & Lipsitch, M. Fractional dosing of yellow fever vaccine to extend supply: a modelling study. Lancet. 388, 2904–2911 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Murgue, B., Zeller, H. & Deubel, V. The ecology and epidemiology of West Nile virus in Africa, Europe, and Asia. Curr. Top. Microbiol. Immunol. 267, 195–221 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Pybus, O. G. et al. Unifying the spatial epidemiology and molecular evolution of emerging epidemics. Proc. Natl Acad. Sci. USA 109, 15066–15071 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Dellicour, S. et al. Epidemiological hypothesis testing using a phylogeographic and phylodynamic framework. Nat. Commun. 11, 1–11 (2020).

    Google Scholar 

  • 19.

    Shocket, M. S. et al. Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23 °C and 26 °C. Elife. 9, e58511 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Haussig, J. M. et al. Early start of the West Nile fever transmission season 2018 in Europe. Euro. Surveill. 23, 1800428 (2018).

    PubMed Central 

    Google Scholar 

  • 21.

    Riccardo, F. et al. West Nile virus in Europe: after action reviews of preparedness and response to the 2018 transmission season in Italy, Slovenia, Serbia and Greece. Glob. Health. 16, 47 (2020).

    Google Scholar 

  • 22.

    Bakonyi, T. & Haussig, J. M. West Nile virus keeps on moving up in Europe. Eurosurveillance. 25, 2001938 (2020).

    PubMed Central 

    Google Scholar 

  • 23.

    Vlaskamp, D. R. M. et al. First autochthonous human West Nile virus infections in the Netherlands, July to August 2020. Eurosurveillance. 25, 2001904 (2020).

  • 24.

    West Nile virus in Europe in 2020 – human cases compared to previous seasons, updated 8 October 2020. https://www.ecdc.europa.eu/en/publications-data/west-nile-virus-europe-2020-human-cases-compared-previous-seasons-updated-8 (2020).

  • 25.

    Weekly updates: 2020 West Nile virus transmission season. https://www.ecdc.europa.eu/en/west-nile-fever/surveillance-and-disease-data/disease-data-ecdc.

  • 26.

    Council Directive 82/894/EEC of 21 December 1982 on the notification of animal diseases within the Community. EUR-Lex https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31982L0894.

  • 27.

    European Food Safety Authority. https://www.efsa.europa.eu/en.

  • 28.

    European Centre for Disease Prevention and Control – West Nile virus. https://www.ecdc.europa.eu/en/west-nile-virus-infection.

  • 29.

    REVIVE – Rede de Vigilância de Vetores. http://www2.insa.pt/sites/INSA/Portugues/AreasCientificas/DoencasInfecciosas/AreasTrabalho/EstVectDoencasInfecciosas/Paginas/Revive.aspx.

  • 30.

    Osório, H. C., Zé-Zé, L., Amaro, F. & Alves, M. J. Mosquito surveillance for prevention and control of emerging mosquito-borne diseases in Portugal – 2008-2014. Int. J. Environ. Res. Public. Health. 11, 11583–11596 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    European network for sharing data on the geographic distribution of arthropod vectors, transmitting human and animal disease agents (VectorNet). https://www.ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/vector-net.

  • 32.

    Filipe, A. R. Anticorpos contra virus transmitidos por artropodos-arbovirus do grupo B em animais do Sul de Portugal: inquérito serológico preliminar com o vírus West Nile, estirpe Egypt 101. Ann. Esc. Nacional de. Saúde. Pública de. Med. Tropical 1, 197–204 (1967).

    CAS 

    Google Scholar 

  • 33.

    Filipe, A. R. & Pinto, M. R. Survey for antibodies to arboviruses in serum of animals from southern Portugal. Am. J. Trop. Med. Hyg. 18, 423–426 (1969).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Filipe, A. R. & Campaniço, M. Encefalomielite equina por arbovírus. A propósito de uma epizootia presuntiva causada pelo vírus West Nile. Revista Portuguesa de Ciências Veterinárias LXVIII, (1973).

  • 35.

    Filipe, A. R. Isolation in Portugal of West Nile virus from Anopheles maculipennis mosquitoes. Acta Virol. 16, 361 (1972).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Filipe, A. R. Anticorpos contra arbovírus na população de Portugal. Separata de O Médico. LXVII, 731–732 (1973).

  • 37.

    Formosinho, P. et al. O vírus West Nile em Portugal – estudos de vigilância epidemiológica. Rev. Portuguesa de. Ciências Veterinárias 101, 61–68 (2006).

    Google Scholar 

  • 38.

    Barros, S. C. et al. Serological evidence of West Nile virus circulation in Portugal. Vet. Microbiol. 152, 407–410 (2011).

    PubMed 

    Google Scholar 

  • 39.

    Almeida, A. P. G. et al. Potential mosquito vectors of arboviruses in Portugal: Species, distribution, abundance and West Nile infection. Trans. R. Soc. Trop. Med. Hyg. 102, 823–832 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Esteves, A. et al. West Nile virus in Southern Portugal, 2004. Vector Borne Zoonotic Dis. 5, 410–413 (2005).

    PubMed 

    Google Scholar 

  • 41.

    Barros, S. C. et al. West Nile virus in horses during the summer and autumn seasons of 2015 and 2016, Portugal. Vet. Microbiol. 212, 75–79 (2017).

    PubMed 

    Google Scholar 

  • 42.

    World Organization for Animal Health (OIE) – West Nile reports. Information received on 03/09/2015 from Prof. Dr Álvaro Mendonça, Director General, Direcção Geral de Alimentação e Veterinária, Ministério da Agricultura E do Mar, Lisboa, Portugal https://www.oie.int/wahis_2/public/wahid.php/Reviewreport/Review?page_refer=MapFullEventReport&reportid=18585 (2015).

  • 43.

    Connell, J. et al. Two linked cases of West Nile virus (WNV) acquired by Irish tourists in the Algarve, Portugal. Weekly releases (1997–2007) 8, 2517 (2004).

  • 44.

    Alves, M. J. et al. Infecção por vírus West Nile [Flavivírus] em Portugal. Considerações acerca de. um. caso cl.ínico de. s.índrome febril com. exantema 8, 46–51 (2012).

    Google Scholar 

  • 45.

    Zé-Zé, L. et al. Human case of West Nile neuroinvasive disease in Portugal, summer 2015. Eurosurveillance 20, 30024 (2015).

    Google Scholar 

  • 46.

    Direcção-Geral de Veterinária (Directorate-General of Veterinary). National statistics on official number of equines in subregions of Portugal. http://srvbamid.dgv.min-agricultura.pt/portal/page/portal/DGV/genericos?actualmenu=23555&generico=33698230&cboui=33698230.

  • 47.

    Osório, H. C., Zé-Zé, L., Amaro, F., Nunes, A. & Alves, M. J. Sympatric occurrence of Culex pipiens (Diptera, Culicidae) biotypes pipiens, molestus and their hybrids in Portugal, Western Europe: feeding patterns and habitat determinants. Med. Vet. Entomol. 28, 103–109 (2014).

    PubMed 

    Google Scholar 

  • 48.

    Gottdenker, N. L., Streicker, D. G., Faust, C. L. & Carroll, C. R. Anthropogenic land use change and infectious diseases: A review of the evidence. Ecohealth. 11, 619–632 (2014).

    PubMed 

    Google Scholar 

  • 49.

    Paz, S. & Semenza, J. C. Environmental drivers of West Nile fever epidemiology in Europe and Western Asia–a review. Int. J. Environ. Res. Public. Health. 10, 3543–3562 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Eisen, L. et al. Irrigated agriculture is an important risk factor for West Nile virus disease in the hyperendemic Larimer-Boulder-Weld area of north central Colorado. J. Med. Entomol. 47, 939–951 (2010).

    PubMed 

    Google Scholar 

  • 51.

    Gates, M. C. & Boston, R. C. Irrigation linked to a greater incidence of human and veterinary West Nile virus cases in the United States from 2004 to 2006. Prev. Vet. Med 89, 134–137 (2009).

    PubMed 

    Google Scholar 

  • 52.

    Kovach, T. J. & Kilpatrick, A. M. Increased human incidence of West Nile virus disease near rice fields in California but Not in Southern United States. Am. J. Trop. Med. Hyg. 99, 222–228 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Rocheleau, J. P. et al. Characterizing environmental risk factors for West Nile virus in Quebec, Canada, using clinical data in humans and serology in pet dogs. Epidemiol. Infect. 145, 2797–2807 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Lourenço, J., Thompson, R. N., Thézé, J. & Obolski, U. Characterising West Nile virus epidemiology in Israel using a transmission suitability index. Euro Surveill. 25, 1900629 (2020).

    PubMed Central 

    Google Scholar 

  • 55.

    Obolski, U. et al. MVSE: An R-package that estimates a climate-driven mosquito-borne viral suitability index. Methods Ecol. Evol. 10, 1357–1370 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Petrone, M. E. et al. Asynchronicity of endemic and emerging mosquito-borne disease outbreaks in the Dominican Republic. Nat. Commun. 12, 151 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Hansen, B. B., Grøtan, V., Herfindal, I. & Lee, A. M. The Moran effect revisited: spatial population synchrony under global warming. Ecography 43, 1591–1602 (2020).

    Google Scholar 

  • 58.

    Arizaga, J. et al. Migratory Connectivity in European Bird Populations: Feather stable isotope values correlate with biometrics of breeding and wintering BluethroatsLuscinia svecica. Ardeola. 62, 255–267 (2015).

    Google Scholar 

  • 59.

    Pakanen, V.-M. et al. Migration strategies of the Baltic dunlin: Rapid jump migration in the autumn but slower skipping type spring migration. J. Avian Biol. 49, jav–01513 (2018).

    Google Scholar 

  • 60.

    Pardal, S. et al. Shorebird low spillover risk of mosquito-borne pathogens on Iberian wetlands. J. Ornithol. 155, 549–554 (2013).

    Google Scholar 

  • 61.

    Rizzoli, A. et al. Understanding West Nile virus ecology in Europe: Culex pipiens host feeding preference in a hotspot of virus emergence. Parasit. Vectors. 8, 1–13 (2015).

    Google Scholar 

  • 62.

    Kilpatrick, A. M., Kramer, L. D., Jones, M. J., Marra, P. P. & Daszak, P. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol. 4, e82 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Mordecai, E. A. et al. Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Negl. Trop. Dis. 11, e0005568 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Vogels, C. B. F., Fros, J. J., Göertz, G. P., Pijlman, G. P. & Koenraadt, C. J. M. Vector competence of northern European Culex pipiens biotypes and hybrids for West Nile virus is differentially affected by temperature. Parasit. Vectors 9, 393 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Chuang, T.-W., Hockett, C. W., Kightlinger, L. & Wimberly, M. C. Landscape-level spatial patterns of West Nile virus risk in the northern Great Plains. Am. J. Trop. Med. Hyg. 86, 724–731 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Crowder, D. W. et al. West nile virus prevalence across landscapes is mediated by local effects of agriculture on vector and host communities. PLoS One 8, e55006 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    García-Bocanegra, I. et al. Epidemiology and spatio-temporal analysis of West Nile virus in horses in Spain between 2010 and 2016. Transbound. Emerg. Dis. 65, 567–577 (2018).

    PubMed 

    Google Scholar 

  • 68.

    Lourenco, J. MVSE – WNV related files for Portugal. https://doi.org/10.6084/m9.figshare.c.5281664.v1 (2021).

  • 69.

    Jiguet, F. et al. Bird population trends are linearly affected by climate change along species thermal ranges. Proc. Biol. Sci. 277, 3601–3608 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Cator, L. J. et al. The Role of Vector Trait Variation in Vector-Borne Disease Dynamics. Front Ecol. Evol. 8, 189 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Kraemer, M. U. G. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 4, e08347 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Hamlet, A. et al. The seasonal influence of climate and environment on yellow fever transmission across Africa. PLoS Negl. Trop. Dis. 12, e0006284 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Thézé, J. et al. Genomic Epidemiology Reconstructs the Introduction and Spread of Zika Virus in Central America and Mexico. Cell Host. Microbe. 23, 855–864.e7 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Perez-Guzman, P. N. et al. Measuring Mosquito-borne Viral Suitability in Myanmar and Implications for Local Zika Virus Transmission. PLoS Curr. 10, (2018).

  • 75.

    Pereira Gusmão Maia, Z. et al. Return of the founder Chikungunya virus to its place of introduction into Brazil is revealed by genomic characterization of exanthematic disease cases. Emerg. Microbes Infect. 9, 53–57 (2020).

    PubMed 

    Google Scholar 

  • 76.

    Copernicus Climate Data Store. https://cds.climate.copernicus.eu/cdsapp#!/dataset/ecv-for-climate-change?tab=overview.

  • 77.

    Lourenço, J. & Obolski, U. MVSE R-package official page. https://sourceforge.net/projects/mvse/.

  • 78.

    R-Forge: Circular Statistics: Project Home. https://r-forge.r-project.org/projects/circular/.

  • 79.

    Geraci, M. Linear Quantile Mixed Models: The lqmm Package for Laplace Quantile Regression. J. Stat. Softw. 57, 1–29 (2014).

    Google Scholar 

  • 80.

    Damineli, D. S. C., Portes, M. T. & Feijó, J. A. Oscillatory signatures underlie growth regimes in Arabidopsis pollen tubes: computational methods to estimate tip location, periodicity, and synchronization in growing cells. J. Exp. Bot. 68, 3267–3281 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    wavelets: Functions for Computing Wavelet Filters, Wavelet Transforms and Multiresolution Analyses. https://CRAN.R-project.org/package=wavelets.

  • 82.

    biwavelet GitHub repository. https://github.com/tgouhier/biwavelet.

  • 83.

    Barros, S. C. et al. Simultaneous detection of West Nile and Japanese encephalitis virus RNA by duplex TaqMan RT-PCR. J. Virol. Methods 193, 554–557 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 84.

    Copernicus Climate Data Store. https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview.

  • 85.

    Filipe, A. R. & de Andrade, H. R. Arboviruses in the Iberian Peninsula. Acta Virol. 34, 582–591 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • 86.

    Almeida, A. P. G. et al. Mosquito surveys and West Nile virus screening in two different areas of southern Portugal, 2004-2007. Vector. Borne. Zoonotic Dis. 10, 673–680 (2010).

    PubMed 

    Google Scholar 

  • 87.

    Freitas, F. B., Novo, M. T., Esteves, A. & de Almeida, A. P. Species Composition and WNV Screening of Mosquitoes from Lagoons in a Wetland Area of the Algarve, Portugal. Front. Physiol. 2, 122 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 88.

    Parreira, R. et al. Two distinct introductions of the West Nile virus in Portugal disclosed by phylogenetic analysis of genomic sequences. Vector. Borne. Zoonotic. Dis. 7, 344–352 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 89.

    Fotakis, E. A. et al. Identification and detection of a novel point mutation in the Chitin Synthase gene of Culex pipiens associated with diflubenzuron resistance. PLoS Negl. Trop. Dis. 14, e0008284 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 90.

    Mixão, V. et al. Comparative morphological and molecular analysis confirms the presence of the West Nile virus mosquito vector, Culex univittatus, in the Iberian Peninsula. Parasit. Vectors. 9, 601 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 91.

    Osório, H. C., Zé-Zé, L. & Alves, M. J. Host-feeding patterns of Culex pipiens and other potential mosquito vectors (Diptera: Culicidae) of West Nile virus (Flaviviridae) collected in Portugal. J. Med. Entomol. 49, 717–721 (2012).

    PubMed 

    Google Scholar 

  • 92.

    Gomes, B. et al. The Culex pipiens complex in continental Portugal: distribution and genetic structure. J. Am. Mosq. Control. Assoc. 28, 75–80 (2012).

    PubMed 

    Google Scholar 

  • 93.

    Gomes, B. et al. Limited genomic divergence between intraspecific forms of Culex pipiens under different ecological pressures. BMC Evol. Biol. 15, 197 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 94.

    Calzolari, M. et al. Detection of mosquito-only flaviviruses in Europe. J. Gen. Virol. 93, 1215–1225 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 95.

    Hernández-Triana, L. M. et al. Genetic diversity and population structure of Culex modestus across Europe: does recent appearance in the United Kingdom reveal a tendency for geographical spread? Med. Vet. Entomol. 34, 86–96 (2020).

    PubMed 

    Google Scholar 

  • 96.

    Alves, J. M. et al. Flavivírus transmitidos por mosquitos: um risco potencial para Portugal. Investigação em ambiente e saúde – desafios e estratégias (Universidade de Aveiro) (2009).

  • 97.

    Conte, A. et al. Spatio-temporal identification of areas suitable for West Nile Disease in the Mediterranean Basin and Central Europe. PLoS. One. 10, e0146024 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 98.

    García-Carrasco, J.-M., Muñoz, A.-R., Olivero, J., Segura, M. & Real, R. Predicting the spatio-temporal spread of West Nile virus in Europe. PLoS Negl. Trop. Dis. 15, e0009022 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 99.

    Marini, G., Manica, M., Delucchia, L., Pugliesed, A. & Rosa, R. Spring temperature shapes West Nile virus transmission in Europe. Acta. Trop. 215, 105796 (2021).

    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Understanding air pollution from space

    A dirt cheap solution? Common clay materials may help curb methane emissions