Fernández-Martínez, M. et al. Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Chang. 4, 471–476 (2014).
Google Scholar
Wright, S. J. Plant responses to nutrient addition experiments conducted in tropical forests. Ecol. Monogr. 89, e01382 (2019).
Google Scholar
Levy-Varon, J. H. et al. Tropical carbon sink accelerated by symbiotic dinitrogen fixation. Nat. Commun. 10, 5637 (2019).
Google Scholar
Batterman, S. A. et al. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502, 224–227 (2013).
Google Scholar
Ter Steege, H. et al. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443, 444–447 (2006).
Google Scholar
Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L. & Barron, A. R. The nitrogen paradox in tropical forest ecosystems. Annu. Rev. Ecol. Evol. Syst. 40, 613–635 (2009).
Google Scholar
Menge, D. N. L. et al. Patterns of nitrogen-fixing tree abundance in forests across Asia and America. J. Ecol. 107, 2598–2610 (2019).
Google Scholar
Matson, W. J.Jr Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11, 119–161 (1980).
Google Scholar
Coley, P. D., Bateman, M. L. & Kusar, T. A. The effects of plant quality on caterpillar growth and defense against natural enemies. Oikos 115, 219–228 (2006).
Google Scholar
Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).
Google Scholar
Barron, A. R., Purves, D. W. & Hedin, L. O. Facultative nitrogen fixation by canopy legumes in a lowland tropical forest. Oecologia 165, 511–520 (2011).
Google Scholar
McCulloch, L. A. & Porder, S. Light fuels while nitrogen suppresses symbiotic nitrogen fixation hotspots in neotropical canopy gap seedlings. New Phytol. 231, 1734–1745 (2021).
Google Scholar
Brookshire, E. N. J. et al. Symbiotic N fixation is sufficient to support net aboveground biomass accumulation in a humid tropical forest. Sci Rep. 9, 7571 (2019).
Google Scholar
Gei, M. et al. Legume abundance along successional and rainfall gradients in Neotropical forests. Nat. Ecol. Evol. 2, 1104–1111 (2018).
Google Scholar
Vance, C. P. in Nitrogen-fixing Leguminous Symbioses. Nitrogen Fixation: Origins, Applications, and Research Progress, Vol. 7 (eds Dilworth, M. J. et al.) (Springer, 2008).
Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13, 87–115 (1991).
Google Scholar
Menge, D. N. L., Levin, S. A. & Hedin, L. O. Evolutionary tradeoffs can select against nitrogen fixation and thereby maintain nitrogen limitation. Proc. Natl Acad. Sci. USA 105, 1573–1578 (2008).
Google Scholar
Sheffer, E., Batterman, S. A., Levin, S. A. & Hedin, L. O. Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle. Nat. Plants 1, 15182 (2015).
Google Scholar
Vitousek, P. M. & Field, C. B. Ecosystem constraints to symbiotic nitrogen fixers: a simple model and its implications. Biogeochemistry 46, 179–202 (1999).
Google Scholar
Coley, P. D. & Barone, J. A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335 (1996).
Google Scholar
Fyllas, N. M. et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6, 2677–2708 (2009).
Google Scholar
Batterman, S. A. et al. Phosphatase activity and nitrogen fixation reflect species differences, not nutrient trading or nutrient balance, across tropical rainforest trees. Ecol. Lett. 21, 1486–1495 (2018).
Google Scholar
Menge, D. N. L., Wolf, A. A. & Funk, J. L. Diversity of nitrogen fixation strategies in Mediterranean legumes. Nat. Plants 1, 15064 (2015).
Google Scholar
Ritchie, M. E. & Tilman, D. Responses of legumes to herbivores and nutrients during succession on a nitrogen-poor soil. Ecol. Soc. Am. 76, 2648–2655 (1995).
Taylor, B. N. & Ostrowsky, L. R. Nitrogen-fixing and non-fixing trees differ in leaf chemistry and defence but not herbivory in a lowland Costa Rican rain forest. J. Trop. Ecol. 35, 270–279 (2019).
Google Scholar
Endara, M.-J. et al. Coevolutionary arms race versus host defense chase in a tropical herbivore–plant system. Proc. Natl Acad. Sci. USA 114, E7499–E7505 (2017).
Google Scholar
Kursar, T. A. & Coley, P. D. Convergence in defense syndromes of young leaves in tropical rainforests. Biochem. Syst. Ecol. 31, 929–949 (2003).
Google Scholar
Kursar, T. A. et al. The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. Proc. Natl Acad. Sci. USA 106, 18073–18078 (2009).
Google Scholar
Taylor, B. N. & Menge, D. N. L. Light regulates tropical symbiotic nitrogen fixation more strongly than soil nitrogen. Nat. Plants 4, 655–661 (2018).
Google Scholar
Adams, M., Turnbull, T., Sprent, J. & Buchmann, N. Legumes are different: leaf nitrogen, photosynthesis, and water use efficiency. Proc. Natl Acad. Sci. USA 113, 4098–4103 (2016).
Google Scholar
Coley, P. D. Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia 74, 531–536 (1988).
Google Scholar
Batterman, S. A., Wurzburger, N. & Hedin, L. O. Nitrogen and phosphorus interact to control tropical symbiotic N2 fixation: a test in Inga punctata. J. Ecol. 101, 1400–1408 (2013).
Google Scholar
Eichhorn, M. P., Nilus, R., Compton, S. G., Hartley, S. E. & Burslem, D. F. R. P. Herbivory of tropical rain forest tree seedlings correlates with future mortality. Ecology 91, 1092–1101 (2010).
Google Scholar
Wink, M. Evolution of secondary metabolites in legumes (Fabaceae). South African J. Bot. 89, 164–175 (2013).
Google Scholar
Currano, E. D. & Jacobs, B. F. Bug-bitten leaves from the early Miocene of Ethiopia elucidate the impacts of plant nutrient concentrations and climate on insect herbivore communities. Glob. Planet. Change 207, 103655 (2021).
Google Scholar
Wieder, W. R., Cleveland, C. C., Lawrence, D. M. & Bonan, G. B. Effects of model structural uncertainty on carbon cycle projections: biological nitrogen fixation as a case study. Environ. Res. Lett. 10, 044016 (2015).
Google Scholar
Sprent, J. I. Legume Nodulation: A Global Perspective (John Wiley, 2009).
Leigh, E. G. Jr Tropical Forest Ecology: A View from Barro Colorado Island (Oxford Univ. Press, 1999).
Comita, L. S., Muller-Landau, H. C., Aguilar, S. & Hubbell, S. P. Asymmetric density dependence shapes species abundances in a tropical tree community. Science 329, 330–332 (2010).
Google Scholar
Queenborough, S. A., Metz, M. R., Valencia, R. & Wright, S. J. Demographic consequences of chromatic leaf defence in tropical tree communities: do red young leaves increase growth and survival? Ann. Bot. 112, 677–684 (2013).
Google Scholar
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671 (2012).
Google Scholar
Pasquini, S. C. & Santiago, L. S. Nutrients limit photosynthesis in seedlings of a lowland tropical forest tree species. Oecologia 168, 311–319 (2012).
Google Scholar
Collalti, A. & Prentice, I. C. Is NPP proportional to GPP? Waring’s hypothesis 20 years on. Tree Physiol. 39, 1473–1483 (2019).
Google Scholar
Westbrook, J. W. et al. What makes a leaf tough? Patterns of correlated evolution between leaf toughness traits and demographic rates among 197 shade-tolerant woody species in a Neotropical forest. Am. Nat. 177, 800–811 (2011).
Google Scholar
Wright, S. J. et al. Functional traits and the growth–mortality trade‐off in tropical trees. Ecology 91, 3664–3674 (2010).
Google Scholar
Kitajima, K. et al. How cellulose-based leaf toughness and lamina density contribute to long leaf lifespans of shade-tolerant species. New Phytol. 195, 640–652 (2012).
Google Scholar
Kitajima, K., Wright, S. J. & Westbrook, J. W. Leaf cellulose density as the key determinant of inter- and intra-specific variation in leaf fracture toughness in a species-rich tropical forest. Interface Focus https://doi.org/10.1098/rsfs.2015.0100 (2016).
Sedio, B. E., Echeverri, J. C. R., Boya, C. A. & Wright, S. J. Sources of variation in foliar secondary chemistry in a tropical forest tree community. Ecology 98, 616–623 (2017).
Google Scholar
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
Google Scholar
Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11, 54–71 (2006).
Google Scholar
Murphy, S. J., Xu, K. & Comita, L. S. Tree seedling richness, but not neighborhood composition, influences insect herbivory in a temperate deciduous forest community. Ecol. Evol. 6, 6310–6319 (2016).
Google Scholar
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. Preprint at https://arxiv.org/abs/1406.5823 (2014).
Moles, A. T. & Westoby, M. Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos 90, 517–524 (2000).
Google Scholar
Bürkner, P. C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. https://doi.org/10.18637/jss.v080.i01 (2017).
Source: Ecology - nature.com