in

Accuracy of tropical peat and non-peat fire forecasts enhanced by simulating hydrology

[adace-ad id="91168"]
  • Edwards, R. B., Naylor, R. L., Higgins, M. M. & Falcon, W. P. Causes of Indonesia’s forest fires. World Dev. 127, 104717 (2020).

    Article 

    Google Scholar 

  • Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Chang. Biol. 17, 798–818 (2011).

    Article 
    ADS 

    Google Scholar 

  • Page, S., et al. Tropical Fire Ecology Ch. 9 (Springer, 2009).

  • Page, S. E. & Hooijer, A. In the line of fire: the peatlands of Southeast Asia. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 371, 20150176 (2016).

  • Huijnen, V. et al. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Sci. Rep. 6, 1–8 (2016).

    Article 

    Google Scholar 

  • Kusumaningtyas, S. D. A. & Aldrian, E. Impact of the June 2013 Riau province Sumatera smoke haze event on regional air pollution. Environ. Res. Lett. 11, 075007 (2016).

    Article 
    ADS 

    Google Scholar 

  • Gaveau, D. L. et al. Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: Evidence from the 2013 Sumatran fires. Sci. Rep. 4, 1–7 (2014).

    Article 

    Google Scholar 

  • Tacconi, L. Preventing fires and haze in Southeast Asia. Nat. Clim. Chang. 6, 640–643 (2016).

    Article 
    ADS 

    Google Scholar 

  • Posa, M. R. C., Wijedasa, L. S. & Corlett, R. T. Biodiversity and conservation of tropical peat swamp forests. Bioscience 61, 49–57 (2011).

    Article 

    Google Scholar 

  • Harrison, M. E. & Rieley, J. O. Tropical peatland biodiversity and conservation in Southeast Asia. Mires Peat 22, 1–7 (2018).

    Google Scholar 

  • Purnomo, H. et al. Fire economy and actor network of forest and land fires in Indonesia. For. Policy Econ. 78, 21–31 (2017).

    Article 

    Google Scholar 

  • Wösten, J. H. M., Clymans, E., Page, S. E., Rieley, J. O. & Limin, S. H. Peat–water interrelationships in a tropical peatland ecosystem in Southeast Asia. CATENA 73, 212–224 (2008).

    Article 

    Google Scholar 

  • Taufik, M., Setiawan, B. I. & Van Lanen, H. A. Increased fire hazard in human-modified wetlands in Southeast Asia. Ambio 48, 363–373 (2019).

    Article 

    Google Scholar 

  • Taufik, M. et al. Amplification of wildfire area burnt by hydrological drought in the humid tropics. Nat. Clim. Chang. 7, 428–431 (2017).

    Article 
    ADS 

    Google Scholar 

  • Fanin, T. & Werf, G. R. Precipitation–fire linkages in Indonesia (1997–2015). Biogeosciences 14, 3995–4008 (2017).

    Article 
    ADS 

    Google Scholar 

  • Field, R. D. et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proc. Natl. Acad. Sci. U.S.A. 113, 9204–9209 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hirano, T. et al. Effects of disturbances on the carbon balance of tropical peat swamp forests. Glob. Chang. Biol. 18, 3410–3422 (2012).

    Article 
    ADS 

    Google Scholar 

  • Ohkubo, S., Hirano, T. & Kusin, K. Influence of fire and drainage on evapotranspiration in a degraded peat swamp forest in Central Kalimantan Indonesia. J. Hydrol. 603, 126906 (2021).

    Article 

    Google Scholar 

  • Nikonovas, T., Spessa, A., Doerr, S. H., Clay, G. D. & Mezbahuddin, S. Near-complete loss of fire-resistant primary tropical forest cover in Sumatra and Kalimantan. Commun. Earth Environ. 1, 1–8 (2020).

    Article 

    Google Scholar 

  • Lin, Y., Wijedasa, L. S. & Chisholm, R. A. Singapore’s willingness to pay for mitigation of transboundary forest-fire haze from Indonesia. Environ. Res. Lett. 12, 024017 (2017).

    Article 
    ADS 

    Google Scholar 

  • Nikonovas, T., Spessa, A., Doerr, S. H., Clay, G. & Mezbahuddin, S. ProbFire: A probabilistic fire early warning system for Indonesia. Nat. Hazards Earth Syst. Sci. 22, 303–322 (2022).

    Article 
    ADS 

    Google Scholar 

  • Taufik, M., Veldhuizen, A. A., Wösten, J. H. M. & van Lanen, H. A. J. Exploration of the importance of physical properties of Indonesian peatlands to assess critical groundwater table depths, associated drought and fire hazard. Geoderma 347, 160–169 (2019).

    Article 
    ADS 

    Google Scholar 

  • Sloan, S., Tacconi, L. & Cattau, M. E. Fire prevention in managed landscapes: Recent success and challenges in Indonesia. Mitig. Adapt. Strateg. Glob. Chang. 26, 1–30 (2021).

    Article 

    Google Scholar 

  • Lestari, I., Murdiyarso, D. & Taufik, M. Rewetting tropical peatlands reduced net greenhouse gas emissions in Riau Province Indonesia. Forests 13, 505 (2022).

    Article 

    Google Scholar 

  • Spessa, A. C. et al. Seasonal forecasting of fire over Kalimantan Indonesia. Nat. Hazards Earth Syst. Sci. 15, 429–442 (2015).

    Article 
    ADS 

    Google Scholar 

  • Mezbahuddin, M., Grant, R. F. & Hirano, T. How hydrology determines seasonal and interannual variations in water table depth, surface energy exchange, and water stress in a tropical peatland: Modeling versus measurements. J. Geophys. Res. Biogeosci. 120, 2132–2157 (2015).

    Article 

    Google Scholar 

  • Mezbahuddin, M., Grant, R. F. & Hirano, T. Modelling effects of seasonal variation in water table depth on net ecosystem CO2 exchange of a tropical peatland. Biogeosciences 11, 577–599 (2014).

    Article 
    ADS 

    Google Scholar 

  • Cobb, A. R. & Harvey, C. F. Scalar simulation and parameterization of water table dynamics in tropical peatlands. Water Resour. Res. 55, 9351–9377 (2019).

    Article 
    ADS 

    Google Scholar 

  • Dadap, N. C., Cobb, A. R., Hoyt, A. M., Harvey, C. F. & Konings, A. G. Satellite soil moisture observations predict burned area in Southeast Asian peatlands. Environ. Res. Lett. 14, 094014 (2019).

    Article 
    ADS 

    Google Scholar 

  • Evans, C. D. et al. Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra Indonesia. Geoderma 338, 410–421 (2019).

    Article 
    ADS 

    Google Scholar 

  • Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9, 1053–1071 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Couwenberg, J. & Hooijer, A. Towards robust subsidence-based soil carbon emission factors for peat soils in south-east Asia, with special reference to oil palm plantations. Mires Peat 12, 1–13 (2013).

    Google Scholar 

  • Khasanah, N. M. & van Noordwijk, M. Subsidence and carbon dioxide emissions in a smallholder peatland mosaic in Sumatra Indonesia. Mitig. Adapt. Strateg. Glob. Chang. 24, 147 (2019).

    Article 

    Google Scholar 

  • Marwanto, S., Watanabe, T., Iskandar, W., Sabiham, S. & Funakawa, S. Effects of seasonal rainfall and water table movement on the soil solution composition of tropical peatland. Soil Sci. Plant Nutr. 64, 386–395 (2018).

    Article 
    CAS 

    Google Scholar 

  • Lubis, M. E. S. et al. Changes in water table depth in an oil palm plantation and its surrounding regions in Sumatra Indonesia. J. Agron. 13, 140–146 (2014).

    Article 

    Google Scholar 

  • Page, S. E., Rieley, J. O. & Wüst, R. Developments in Earth Surface Processes (Volume 9) Ch. 3 (Elsevier, 2006).

  • Haffiez, N. et al. Exploration of machine learning algorithms for predicting the changes in abundance of antibiotic resistance genes in anaerobic digestion. Sci. Total Environ. 839, 156211 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Grant, R. F., Desai, A. R. & Sulman, B. N. Modelling contrasting responses of wetland productivity to changes in water table depth. Biogeosciences 9, 4215–4231 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mezbahuddin, M., Grant, R. F. & Flanagan, L. B. Modeling hydrological controls on variations in peat water content, water table depth, and surface energy exchange of a boreal western Canadian fen peatland. J. Geophys. Res. Biogeosci. 121, 2216–2242 (2016).

    Article 

    Google Scholar 

  • Dimitrov, D. D., Grant, R. F., Lafleur, P. M. & Humphreys, E. R. Modeling the effects of hydrology on gross primary productivity and net ecosystem productivity at Mer Bleue bog. J. Geophys. Res. Biogeosci. 116, G04010 (2011).

    Article 
    ADS 

    Google Scholar 

  • Dimitrov, D. D., Bhatti, J. S. & Grant, R. F. The transition zones (ecotone) between boreal forests and peatlands: Modelling water table along a transition zone between upland black spruce forest and poor forested fen in central Saskatchewan. Ecol. Modell. 274, 57–70 (2014).

    Article 

    Google Scholar 

  • Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Article 

    Google Scholar 

  • Hodnett, M. G. & Tomasella, J. Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: A new water-retention pedo-transfer functions developed for tropical soils. Geoderma 108, 155–180 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Funk, C. et al. The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Sci. Data 2, 1–21 (2015).

    Article 

    Google Scholar 

  • Osaki, M., Hirose, K., Segah, H. & Helmy, F. Tropical Peatland Ecosystems Ch. 9 (Springer, 2016).

  • Razavi, S. Deep learning, explained: Fundamentals, explainability, and bridgeability to process-based modelling. Environ. Modell. Softw. 144, 105159 (2021).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Moving water and earth

    Study: Extreme heat is changing habits of daily life