in

Allelochemical run-off from the invasive terrestrial plant Impatiens glandulifera decreases defensibility in Daphnia

  • Holt, R. D. Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol. 12, 197–229 (1977).

    Article 
    CAS 

    Google Scholar 

  • Dugatkin, L. A. & Godin, J. G. J. Prey approaching predators: A cost-benefit perspective. Ann. Zool. Fennici 29, 233–252 (1992).

    Google Scholar 

  • Portalier, S. M. J., Fussmann, G. F., Loreau, M. & Cherif, M. The mechanics of predator–prey interactions: First principles of physics predict predator–prey size ratios. Funct. Ecol. 33, 323–334 (2019).

    Article 

    Google Scholar 

  • Achrai, B., Bar-On, B. & Wagner, H. D. Biological armors under impact—effect of keratin coating, and synthetic bio-inspired analogues. Bioinsp. Biomim. 10, 016009 (2015).

    Article 
    CAS 

    Google Scholar 

  • Stankowich, T. & Campbell, L. A. Living in the danger zone: Exposure to predators and the evolution of spines and body armor in mammals. Evolution 70, 1501–1511 (2016).

    Article 

    Google Scholar 

  • Tollrian, R. & Harvell, C. D. The ecology and evolution of inducible defenses. Q. Rev. Biol. 65, 323–340 (1990).

    Article 

    Google Scholar 

  • Nordlund, D. A. & Lewis, W. J. Terminology of chemical releasing stimuli in intraspecific and interspecific interactions. J. Chem. Ecol. 2, 211–220 (1976).

    Article 

    Google Scholar 

  • Poulin, R. X. et al. Chemical encoding of risk perception and predator detection among estuarine invertebrates. Proc. Natl. Acad. Sci. USA 115, 662–667 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tollrian, R. & Dodson, S. I. Inducible defenses in Cladocera: Constraints, costs, and multipredator environments. Ecol. Evol. Inducible Defenses 177, 177–202 (1999).

    Article 

    Google Scholar 

  • Von Elert, E. & Loose, C. J. Predator-induced diel vertical migration in Daphnia: Enrichment and preliminary chemical characterization of a kairomone exuded by fish. J. Chem. Ecol. 22, 885–895 (1996).

    Article 

    Google Scholar 

  • Barry, M. J. Effects of endosulfan on Chaoborus-induced life-history shifts and morphological defenses in Daphnia pulex. J. Plankton Res. 22, 1705–1718 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Riessen, H. P. & Gilbert, J. J. Divergent developmental patterns of induced morphological defenses in rotifers and Daphnia: Ecological and evolutionary context. Limnol. Oceanogr. 64, 541–557 (2019).

    Article 
    ADS 

    Google Scholar 

  • Sperfeld, E., Nilssen, J. P., Rinehart, S., Schwenk, K. & Hessen, D. O. Ecology of predator-induced morphological defense traits in Daphnia longispina (Cladocera, Arthropoda). Oecologia 192, 687–698 (2020).

    Article 
    ADS 

    Google Scholar 

  • Tollrian, R. Neckteeth formation in Daphnia pulex as an example of continuous phenotypic plasticity: Morphological effects of Chaoborus kairomone concentration and their quantification. J. Plankton Res. 15, 1309–1318 (1993).

    Article 

    Google Scholar 

  • Laforsch, C. & Tollrian, R. Inducible defenses in multipredator environments: Cyclomorphosis in Daphnia cucullata. Ecology 85, 2302–2311 (2004).

    Article 

    Google Scholar 

  • Petrusek, A., Tollrian, R., Schwenk, K., Haas, A. & Laforsch, C. A ‘crown of thorns’ is an inducible defense that protects Daphnia against an ancient predator. Proc. Natl. Acad. Sci. USA 106, 2248–2252 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Engel, K. & Tollrian, R. Inducible defences as key adaptations for the successful invasion of Daphnia lumholtzi in North America?. Proc. R. Soc. B Biol. Sci. 276, 1865–1873 (2009).

    Article 

    Google Scholar 

  • Barry, M. J. & Bayly, I. A. E. Further studies on predator induction of crests in australian Daphnia and the effects of crests on predation. Mar. Freshw. Res. 36, 519–535 (1985).

    Google Scholar 

  • Rabus, M. & Laforsch, C. Growing large and bulky in the presence of the enemy: Daphnia magna gradually switches the mode of inducible morphological defences. Funct. Ecol. 25, 1137–1143 (2011).

    Article 

    Google Scholar 

  • Herzog, Q. & Laforsch, C. Modality matters for the expression of inducible defenses: Introducing a concept of predator modality. BMC Biol. 11, 113 (2013).

    Article 

    Google Scholar 

  • Riessen, H. P. et al. Changes in water chemistry can disable plankton prey defenses. Proc. Natl. Acad. Sci. USA 109, 15377–15382 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tollrian, R., Duggen, S., Weiss, L. C., Laforsch, C. & Kopp, M. Density-dependent adjustment of inducible defenses. Sci. Rep. 5, 12736 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Weiss, L. C. et al. Rising pCO2 in freshwater ecosystems has the potential to negatively affect predator-induced defenses in Daphnia. Curr. Biol. 28, 327-332.e3 (2018).

    Article 
    CAS 

    Google Scholar 

  • Hanazato, T. Pesticide effects on freshwater zooplankton: An ecological perspective. Environ. Pollut. 112, 1–10 (2001).

    Article 
    CAS 

    Google Scholar 

  • Coors, A. & DeMeester, L. Erratum: Synergistic, antagonistic and additive effects of multiple stressors: Predation threat, parasitism and pesticide exposure in Daphnia magna. J. Appl. Ecol. 46, 1138 (2009).

    Google Scholar 

  • Schriever, C. A., von der Ohe, P. C. & Liess, M. Estimating pesticide runoff in small streams. Chemosphere 68, 2161–2171 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lobstein, A. et al. Quantitative determination of naphthoquinones of Impatiens species. Phytochem. Anal. 12, 202–205 (2001).

    Article 
    CAS 

    Google Scholar 

  • Kisielius, V. et al. The invasive butterbur contaminates stream and seepage water in groundwater wells with toxic pyrrolizidine alkaloids. Sci. Rep. 10, 19784 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yoneyama, K. & Natsume, M. 4.13 Allelochemicals for Plant—Plant and Plant—Microbe Interactions. Interactions (Elsevier Inc., 2010).

  • Griffiths, M. R., Strobel, B. W., Hama, J. R. & Cedergreen, N. Toxicity and risk of plant-produced alkaloids to Daphnia magna. Environ. Sci. Eur. 33, 10 (2021).

    Article 
    CAS 

    Google Scholar 

  • Callaway, R. M. & Ridenour, W. M. Novel weapons: Invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2, 436–443 (2004).

    Article 

    Google Scholar 

  • Beerling, D. J. & Perrins, J. M. Impatiens glandulifera Royle (Impatiens Roylei Walp.). J. Ecol. 81, 367–382 (1993).

    Article 

    Google Scholar 

  • Roy, B., Popay, A.I., Champion, P.D., James, T.K. & Rahman, A. An Illustrated Guide to Common Weeds of New Zealand. 2nd Edn. (New Zealand Plant Protection Society, 2004).

  • Ruckli, R., Hesse, K., Glauser, G., Rusterholz, H. P. & Baur, B. Inhibitory potential of naphthoquinones leached from leaves and exuded from roots of the invasive plant Impatiens glandulifera. J. Chem. Ecol. 40, 371–378 (2014).

    Article 
    CAS 

    Google Scholar 

  • Gruntman, M., Pehl, A. K., Joshi, S. & Tielbörger, K. Competitive dominance of the invasive plant Impatiens glandulifera: Using competitive effect and response with a vigorous neighbour. Biol. Invasions 16, 141–151 (2014).

    Article 

    Google Scholar 

  • Bieberich, J. et al. Species- and developmental stage-specific effects of allelopathy and competition of invasive Impatiens glandulifera on cooccurring plants. PLoS ONE 13, e0205843 (2018).

    Article 

    Google Scholar 

  • Wright, D. A., Dawson, R., Cutler, S. J., Cutler, H. G. & Orano-Dawson, C. E. Screening of natural product biocides for control of non-indigenous species. Environ. Technol. 28, 309–319 (2007).

    Article 
    CAS 

    Google Scholar 

  • Kayashima, T., Mori, M., Yoshida, H., Mizushina, Y. & Matsubara, K. 1,4-naphthoquinone is a potent inhibitor of human cancer cell growth and angiogenesis. Cancer Lett. 278, 34–40 (2009).

    Article 
    CAS 

    Google Scholar 

  • Jentzsch, J. et al. New antiparasitic bis-naphthoquinone derivatives. Chem. Biodivers. 17, e1900597 (2020).

    Article 
    CAS 

    Google Scholar 

  • Mitchell, M. J., Brescia, A. I., Smith, S. L. & Morgan, E. D. Effects of the compounds 2-methoxynaphthoquinone, 2-propoxynaphthoquinone, and 2-isopropoxynaphthoquinone on ecdysone 20-monooxygenase activity. Arch. Insect Biochem. Physiol. 66, 45–52 (2007).

    Article 
    CAS 

    Google Scholar 

  • Westfall, B. A., Russell, R. L. & Auyong, T. K. Depressant agent from walnut hulls. Science 134, 1617 (1961).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Diller, J. G. P. et al. The Beauty is a beast: Does leachate from the invasive terrestrial plant Impatiens glandulifera affect aquatic food webs?. Ecol. Evol. 12, e8781 (2022).

    Article 

    Google Scholar 

  • Elendt, B. P. Selenium deficiency in Crustacea—an ultrastructural approach to antennal damage in Daphnia magna Straus. Protoplasma 154, 25–33 (1990).

    Article 
    CAS 

    Google Scholar 

  • Ebert, D. The trade-off between offspring size and number in Daphnia magna: The influence of genetic, environmental and maternal effects. Arch. Fur Hydrobiol. 90, 453–473 (1993).

    Google Scholar 

  • Trotter, B., Ramsperger, A. F. R. M., Raab, P., Haberstroh, J. & Laforsch, C. Plastic waste interferes with chemical communication in aquatic ecosystems. Sci. Rep. 9, 5889 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Laforsch, C., Beccara, L. & Tollrian, R. Inducible defenses: The relevance of chemical alarm cues in Daphnia. Limnol. Oceanogr. 51, 1466–1472 (2006).

    Article 
    ADS 

    Google Scholar 

  • Miner, B. E., de Meester, L., Pfrender, M. E., Lampert, W. & Hairston, N. G. Linking genes to communities and ecosystems: Daphnia as an ecogenomic model. Proc. R. Soc. B Biol. Sci. 279, 1873–1882 (2012).

    Article 

    Google Scholar 

  • Altshuler, I. et al. An integrated multi-disciplinary approach for studying multiple stressors in freshwater ecosystems: Daphnia as a model organism. Integr. Comp. Biol. 51, 623–633 (2011).

    Article 
    CAS 

    Google Scholar 

  • Diel, P., Kiene, M., Martin-Creuzburg, D. & Laforsch, C. Knowing the enemy: Inducible defences in freshwater zooplankton. Diversity 12, 147 (2020).

    Article 
    CAS 

    Google Scholar 

  • Pestana, J. L. T., Loureiro, S., Baird, D. J. & Soares, A. M. V. M. Pesticide exposure and inducible antipredator responses in the zooplankton grazer, Daphnia magna Straus. Chemosphere 78, 241–248 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Grant, J. W. G. & Bayly, I. A. E. Predator induction of crests in morphs of the Daphnia carinata King complex. Limnol. Oceanogr. 26, 201–218 (1981).

    Article 
    ADS 

    Google Scholar 

  • Dodson, S. I. Zooplankton competition and predation: An experimental test of the size-efficiency hypothesis. Ecology 55, 605–613 (1974).

    Article 

    Google Scholar 

  • Klotz, L. O., Hou, X. & Jacob, C. 1,4-naphthoquinones: From oxidative damage to cellular and inter-cellular signaling. Molecules 19, 14902–14918 (2014).

    Article 

    Google Scholar 

  • Subramoniam, T. Crustacean ecdysteriods in reproduction and embryogenesis. Comp. Biochem. C Physiol. Pharmacol. Toxicol. Endocrinol. 125, 135–156 (2000).

    Article 
    CAS 

    Google Scholar 

  • De Coen, W. M. & Janssen, C. R. The missing biomarker link: Relationships between effects on the cellular energy allocation biomarker of toxicant-stressed Daphnia magna and corresponding population characteristics. Environ. Toxicol. Chem. 22, 1632–1641 (2003).

    Article 

    Google Scholar 

  • Palma, P. et al. Effects of atrazine and endosulfan sulphate on the ecdysteroid system of Daphnia magna. Chemosphere 74, 676–681 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mount, D. I. & Norberg, T. J. A seven-day life cycle Cladoceran toxicity test. Environ. Toxicol. Chem. 3, 425–434 (1984).

    Article 
    CAS 

    Google Scholar 

  • Elnabarawy, M. T., Welter, A. N. & Robideau, R. R. Relative sensitivity of three daphnid species to selected organic and inorganic chemicals. Environ. Toxicol. Chem. 5, 393–398 (1986).

    Article 
    CAS 

    Google Scholar 

  • Jaikumar, G., Baas, J., Brun, N. R., Vijver, M. G. & Bosker, T. Acute sensitivity of three Cladoceran species to different types of microplastics in combination with thermal stress. Environ. Pollut. 239, 733–740 (2018).

    Article 
    CAS 

    Google Scholar 

  • Gama-Flores, J. L., Salas, M. E. H., Sarma, S. S. S. & Nandini, S. Demographic responses of Cladocerans (Cladocera) in relation to different concentrations of humic substances. J. Environ. Sci. Heal. Part A Toxic/Hazardous Subst. Environ. Eng. 54, 1311–1317 (2019).

    CAS 

    Google Scholar 

  • Cohen, J. E., Pimm, S. L., Yodzis, P. & Saldana, J. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 62, 67–78 (1993).

    Article 

    Google Scholar 

  • Hunt, R. J. & Swift, M. Predation by larval damselflies on Cladocerans. J. Freshw. Ecol. 25, 345–351 (2010).

    Article 

    Google Scholar 

  • Riessen, H. P. & Trevett-Smith, J. B. Turning inducible defenses on and off: Adaptive responses of Daphnia to a gape-limited predator. Ecology 90, 3455–3469 (2009).

    Article 

    Google Scholar 

  • Pijanowska, J. Cyclomorphosis in Daphnia: An adaptation to avoid invertebrate predation. Hydrobiologia 198, 41–50 (1990).

    Article 

    Google Scholar 

  • Gu, L. et al. Coping with antagonistic predation risks: Predator-dependent unique responses are dominant in Ceriodaphnia cornuta. Mol. Ecol. 31, 3951–3962 (2022).

    Article 
    CAS 

    Google Scholar 

  • Jeziorski, A. et al. The jellification of north temperate lakes. Proc. R. Soc. B Biol. Sci. 2014, 282 (2014).

    Google Scholar 

  • Ponti, B., Piscia, R., Bettinetti, R. & Manca, M. Long-term adaptation of Daphnia to toxic environment in Lake Orta: The effects of short-term exposure to copper and acidification. J. Limnol. 69, 217–224 (2010).

    Article 

    Google Scholar 

  • Wright, D. A., Mitchelmore, C. L., Dawson, R. & Cutler, H. G. The influence of water quality on the toxicity and degradation of juglone (5-hydroxy 1,4-naphthoquinone). Environ. Technol. 28, 1091–1101 (2007).

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Food insecurity and health outcomes among community-dwelling middle-aged and older adults in India

    Schooling behavior driven complexities in a fear-induced prey–predator system with harvesting under deterministic and stochastic environments