in

An ankylosaur larynx provides insights for bird-like vocalization in non-avian dinosaurs

  • Reilly, S. M. & Lauder, G. V. The evolution of tetrapod feeding behavior: kinematic homologies in prey transport. Evolution 44, 1542–1557 (1990).

    Article 

    Google Scholar 

  • Iwasaki, S. Evolution of the structure and function of the vertebrate tongue. J. Anat. 201, 1–13 (2002).

    Article 

    Google Scholar 

  • Fitch, W. T. & Suthers, R. A. In Vertebrate Sound Production and Acoustic Communication (eds Suthers, R. A., Fitch, W. T., Fay, R. R., & Popper, A. N.) 1–18 (Springer, 2016).

  • Carroll, R. L. The Palaeozoic ancestry of salamanders, frogs and caecilians. Zool. J. Linn. Soc. 150, 1–140 (2007).

    Article 

    Google Scholar 

  • Schwenk, K. in Feeding: Form, Function and Evolution in Tetrapod Vertebrates (ed. Schwenk, K.) 175–291 (Academic Press, 2000).

  • Schwenk, K. & Rubega, M. In Physiological and ecological adaptations to feeding in vertebrates, (eds. Starck, M. & Wang, T.) 1–41 (Science Pub. Inc., 2005).

  • Schumacher, G. H. In Biology of the Reptilia, 4 (ed Gans, C.) 101–200 (Academic Press, 1973).

  • Reese, A. M. The laryngeal region of Alligator mississippiensis. Anat. Rec. 92, 273–277 (1945).

    Article 

    Google Scholar 

  • Riede, T., Li, Z., Tokuda, I. & Farmer, C. G. Functional morphology of the Alligator mississippiensis larynx with implications for vocal production. J. Exp. Biol. 218, 991–998 (2015).

    Article 

    Google Scholar 

  • McLelland, J. In Form and Function in Birds, 4 (eds King, A. S. & McLelland, J.) 69–103 (Academic Press, 1989).

  • Homberger, D. G. In The Biology of the Avian Respiratory System (ed Maina, J. N.) 27–97 (Springer, 2017).

  • Fitch, W. T. In Encyclopedia of Language & Linguistics (ed Brown, K.) 115–121 (Elsevier, 2006).

  • Clarke, J. A. et al. Fossil evidence of the avian vocal organ from the Mesozoic. Nature 538, 502–505 (2016).

    Article 

    Google Scholar 

  • Kingsley, E. P. et al. Identity and novelty in the avian syrinx. Proc. Natl Acad. Sci. USA 115, 10209–10217 (2018).

    Article 
    CAS 

    Google Scholar 

  • Riede, T., Thomson, S. L., Titze, I. R. & Goller, F. The evolution of the syrinx: an acoustic theory. PLoS Biol. 17, e2006507 (2019).

  • Nowicki, S. Vocal tract resonances in oscine bird sound production: evidence from birdsongs in a helium atmosphere. Nature 325, 53–55 (1987).

    Article 
    CAS 

    Google Scholar 

  • Hill, R. V. et al. A complex hyobranchial apparatus in a Cretaceous dinosaur and the antiquity of avian paraglossalia. Zool. J. Linn. Soc. 175, 892–909 (2015).

    Article 

    Google Scholar 

  • Li, Z. H., Zhou, Z. H. & Clarke, J. A. Convergent evolution of a mobile bony tongue in flighted dinosaurs and pterosaurs. PLoS One 13, e0198078 (2018).

    Article 

    Google Scholar 

  • Bonaparte, J. F., Novas, F. E. & Coria, R. A. Carnotaurus sastrei Bonaparte, the horned, lightly built carnosaur from the Middle Cretaceous of Patagonia. Contrib. in Sci. Nat. Hist. Mus. L. A. 416, 1–42 (1990).

  • Maryanska, T. Ankylosauridae (Dinosauria) from Mongolia. Palaeontol. Pol. 37, 85–151 (1977).

    Google Scholar 

  • Mori, C. A comparative anatomical study on the laryngeal cartilages and laryngeal muscles of birds, and a developmental study on the larynx of the domestic fowl. Acta Med. 27, 2629–2678 (1957).

    Google Scholar 

  • Siebenrock, F. Über den Kehlkopf und die Luftröhre der Schildkröten. Sitzungsberichte Der Kais. 108, 581–595 (1899).

    Google Scholar 

  • Soley, J. T., Tivane, C. & Crole, M. R. Gross morphology and topographical relationships of the hyobranchial apparatus and laryngeal cartilages in the ostrich (Struthio camelus). Acta Zool. 96, 442–451 (2015).

    Article 

    Google Scholar 

  • Olson, S. L. & Feduccia, A. Presbyornis and the origin of the Anseriformes (Aves: Charadriomorphae). Smithson. Contrib. Zool. 323, 1–24 (1980).

  • Soley, J. T., Tivane, C. & Crole, M. R. A Gross morphology and topographical relationships of the hyobranchial apparatus and laryngeal cartilages in the ostrich (Struthio camelus). Acta Zool. 94, 442–451 (2015).

    Article 

    Google Scholar 

  • Hogg, D. A. Ossification of the laryngeal, tracheal and syringeal cartilages in the domestic fowl. J. Anat. 134, 57–71 (1982).

    CAS 

    Google Scholar 

  • Gaunt, A. S., Stein, R. C. & Gaunt, S. L. Pressure and air flow during distress calls of the starling, Sturnus vulgaris (Aves; Passeriformes). J. Exp. Zool. 183, 241–261 (1973).

    Article 

    Google Scholar 

  • Sacchi, R., Galeotti, P., Fasola, M. & Gerzeli, G. Larynx morphology and sound production in three species of Testudinidae. J. Morphol. 261, 175–183 (2004).

    Article 

    Google Scholar 

  • Titze, I. R. The physics of small-amplitude oscillation of the vocal folds. J. Acoust. Soc. Am. 83, 1536–1552 (1988).

    Article 
    CAS 

    Google Scholar 

  • Russell, A. P., Hood, H. A. & Bauer, A. M. Laryngotracheal and cervical muscular anatomy in the genus Uroplatus (Gekkota: Gekkonidae) in relation to distress call emission. Afr. J. Herpetol. 63, 127–151 (2014).

    Article 

    Google Scholar 

  • Russell, A. P., Rittenhouse, D. R. & Bauer, A. M. Laryngotracheal morphology of Afro‐Madagascan Geckos: a comparative survey. J. Morphol. 245, 241–268 (2000).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/1097-4687(200009)245:33.0.CO;2-H” data-track-action=”article reference” href=”https://doi.org/10.1002%2F1097-4687%28200009%29245%3A3%3C241%3A%3AAID-JMOR5%3E3.0.CO%3B2-H” aria-label=”Article reference 31″ data-doi=”10.1002/1097-4687(200009)245:33.0.CO;2-H”>Article 
    CAS 

    Google Scholar 

  • Gans, C. & Maderson, P. F. Sound producing mechanisms in recent reptiles: review and comment. Am. Zool. 13, 1195–1203 (1973).

    Article 

    Google Scholar 

  • Galeotti, P., Sacchi, R., Fasola, M. & Ballasina, D. Do mounting vocalisations in tortoises have a communication function? A comparative analysis. Herpetol. J. 15, 61–71 (2005).

    Google Scholar 

  • Fletcher, N. H. Bird song—a quantitative acoustic model. J. Theor. Biol. 135, 455–481 (1988).

    Article 

    Google Scholar 

  • Vergne, A. L., Pritz, M. B. & Mathevon, N. Acoustic communication in crocodilians: from behaviour to brain. Biol. Rev. 84, 391–411 (2009).

    Article 
    CAS 

    Google Scholar 

  • Marler, P. R. & Slabbekoorn, H. Nature’s music: The science of birdsong (Academic Press, San Diego, USA, 2004).

  • White, S. S. In Sisson and Grossman’s The Anatomy of the Domestic Animals. 2 (ed Getty, R.) 1891–1897 (Saunders, Philadelphia, USA 975).

  • Kirchner, J. A. The vertebrate larynx: adaptations and aberrations. Laryngoscope 103, 1197–1201 (1993).

    Article 
    CAS 

    Google Scholar 

  • Mackelprang, R. & Goller, F. Ventilation patterns of the songbird lung/air sac system during different behaviors. J. Exp. Biol. 216, 3611–3619 (2013).

    Google Scholar 

  • Brocklehurst, R. J., Schachner, E. R. & Sellers, W. I. Vertebral morphometrics and lung structure in non-avian dinosaurs. R. Soc. Open Sci. 5, 180983 (2018).

    Article 

    Google Scholar 

  • Cerda, I. A., Salgado, L. & Powell, J. E. Extreme postcranial pneumaticity in sauropod dinosaurs from South America. Paläontol. Z. 86, 441–449 (2012).

    Article 

    Google Scholar 

  • Sereno, P. C. et al. Evidence for avian intrathoracic air sacs in a new predatory dinosaur from Argentina. PLoS One 3, e3303 (2008).

  • Chiari, Y., Cahais, V., Galtier, N. & Delsuc, F. Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biol. 10, 65 (2012).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Responsive design meets responsibility for the planet’s future

    Featured video: Investigating our blue ocean planet