in

An integrated approach of remote sensing and geospatial analysis for modeling and predicting the impacts of climate change on food security

  • Ortiz-Bobea, A., Ault, T. R., Carrillo, C. M., Chambers, R. G. & Lobell, D. B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Chang. 11, 306–312 (2021).

    Article 
    ADS 

    Google Scholar 

  • Garajeh, M. K. & Feizizadeh, B. A comparative approach of data-driven split-window algorithms and MODIS products for land surface temperature retrieval. Appl. Geomat. 13, 715–733 (2021).

    Article 

    Google Scholar 

  • Alizadeh-Choobari, O., Ahmadi-Givi, F., Mirzaei, N. & Owlad, E. Climate change and anthropogenic impacts on the rapid shrinkage of Lake Urmia. Int. J. Climatol. 36, 4276–4286 (2016).

    Article 

    Google Scholar 

  • Rembold, F., Kerdiles, H., Lemoine, G. & Perez-Hoyos, A. Impact of El Niño on agriculture in Southern Africa for the 2015/2016 main season. Joint Research Centre (JRC) MARS Bulletin–Global Outlook Series. European Commission, Brussels (2016).

  • Zampieri, M., Ceglar, A., Dentener, F. & Toreti, A. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ. Res. Lett. 12, 064008 (2017).

    Article 
    ADS 

    Google Scholar 

  • Toté, C. et al. Evaluation of the SPOT/VEGETATION Collection 3 reprocessed dataset: Surface reflectances and NDVI. Remote Sens. Environ. 201, 219–233 (2017).

    Article 
    ADS 

    Google Scholar 

  • Solomon, N. et al. Environmental impacts and causes of conflict in the Horn of Africa: A review. Earth Sci. Rev. 177, 284–290 (2018).

    Article 
    ADS 

    Google Scholar 

  • Dresse, A., Fischhendler, I., Nielsen, J. Ø. & Zikos, D. Environmental peacebuilding: Towards a theoretical framework. Coop. Confl. 54, 99–119 (2019).

    Article 

    Google Scholar 

  • Vos, R., Jackson, J., James, S. & Sánchez, M. V. Refugees and Conflict-Affected People: Integrating Displaced Communities into Food Systems. 2020 Global Food Policy Report, 46–53 (2020).

  • Zulfiqar, F., Navarro, M., Ashraf, M., Akram, N. A. & Munné-Bosch, S. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sci. 289, 110270 (2019).

    Article 
    CAS 

    Google Scholar 

  • Viana, C. M. & Rocha, J. Evaluating dominant land use/land cover changes and predicting future scenario in a rural region using a memoryless stochastic method. Sustainability 12, 4332 (2020).

    Article 

    Google Scholar 

  • Vasile, A. J., Popescu, C., Ion, R. A. & Dobre, I. From conventional to organic in Romanian agriculture—Impact assessment of a land use changing paradigm. Land Use Policy 46, 258–266 (2015).

    Article 

    Google Scholar 

  • Veloso, A. et al. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 199, 415–426 (2017).

    Article 
    ADS 

    Google Scholar 

  • Samasse, K., Hanan, N. P., Tappan, G. & Diallo, Y. Assessing cropland area in West Africa for agricultural yield analysis. Remote Sens. 10, 1785 (2018).

    Article 
    ADS 

    Google Scholar 

  • Van Esse, H. P., Reuber, T. L. & van der Does, D. Genetic modification to improve disease resistance in crops. New Phytol. 225, 70–86 (2020).

    Article 

    Google Scholar 

  • FAO. The Future of Food and Agriculture—Trends and Challenges (FAO, 2017).

    Google Scholar 

  • Müller, B. et al. Modelling food security: Bridging the gap between the micro and the macro scale. Glob. Environ. Chang. 63, 102085 (2020).

    Article 

    Google Scholar 

  • Food and Agriculture Organization of the United Nations. Forest Management and Conservation Agriculture: Experiences of Smallholder Farmers in the Eastern Region of Paraguay (FAO, 2013).

    Google Scholar 

  • FAO Food Price Index. World Food Situation (FAO, 2021).

    Google Scholar 

  • Sishodia, R. P., Ray, R. L. & Singh, S. K. Applications of remote sensing in precision agriculture: A review. Remote Sens. 12, 3136 (2020).

    Article 
    ADS 

    Google Scholar 

  • Weiss, M., Jacob, F. & Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 236, 111402 (2020).

    Article 
    ADS 

    Google Scholar 

  • Feizizadeh, B., Garajeh, M. K., Blaschke, T. & Lakes, T. An object based image analysis applied for volcanic and glacial landforms mapping in Sahand Mountain, Iran. CATENA 198, 105073 (2021).

    Article 

    Google Scholar 

  • Wen, W., Timmermans, J., Chen, Q. & van Bodegom, P. M. A review of remote sensing challenges for food security with respect to salinity and drought threats. Remote Sens. 13, 6 (2020).

    Article 
    ADS 

    Google Scholar 

  • Feizizadeh, B., Omarzadeh, D., Kazemi Garajeh, M., Lakes, T. & Blaschke, T. Machine learning data-driven approaches for land use/cover mapping and trend analysis using Google Earth Engine. J. Environ. Plan. Manag. https://doi.org/10.1080/09640568.2021.2001317 (2021).

    Article 

    Google Scholar 

  • Westerveld, J. J. et al. Forecasting transitions in the state of food security with machine learning using transferable features. Sci. Total Environ. 786, 147366 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Anderson, R., Bayer, P. E. & Edwards, D. Climate change and the need for agricultural adaptation. Curr. Opin. Plant Biol. 56, 197–202 (2020).

    Article 

    Google Scholar 

  • Baniya, B., Tang, Q., Xu, X., Haile, G. G. & Chhipi-Shrestha, G. Spatial and temporal variation of drought based on satellite derived vegetation condition index in Nepal from 1982–2015. Sensors 19, 430 (2019).

    Article 
    ADS 

    Google Scholar 

  • Kubitza, C., Krishna, V. V., Schulthess, U. & Jain, M. Estimating adoption and impacts of agricultural management practices in developing countries using satellite data. A scoping review. Agron. Sustain. Dev. 40, 1–21 (2020).

    Article 

    Google Scholar 

  • Lees, T., Tseng, G., Atzberger, C., Reece, S. & Dadson, S. Deep learning for vegetation health forecasting: a case study in Kenya. Remote Sens. 14, 698 (2022).

    Article 
    ADS 

    Google Scholar 

  • Khanian, M., Serpoush, B. & Gheitarani, N. Balance between place attachment and migration based on subjective adaptive capacity in response to climate change: The case of Famenin County in Western Iran. Clim. Dev. 11, 69–82 (2019).

    Article 

    Google Scholar 

  • Khanian, M., Marshall, N., Zakerhaghighi, K., Salimi, M. & Naghdi, A. Transforming agriculture to climate change in Famenin County, West Iran through a focus on environmental, economic and social factors. Weather Clim. Extremes 21, 52–64 (2018).

    Article 

    Google Scholar 

  • Leroux, L. et al. Crop monitoring using vegetation and thermal indices for yield estimates: Case study of a rainfed cereal in semi-arid West Africa. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 9, 347–362 (2015).

    Article 
    ADS 

    Google Scholar 

  • Sun, J. et al. Multilevel deep learning network for county-level corn yield estimation in the us corn belt. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 13, 5048–5060 (2020).

    Article 
    ADS 

    Google Scholar 

  • Tian, H. et al. An LSTM neural network for improving wheat yield estimates by integrating remote sensing data and meteorological data in the Guanzhong Plain, PR China. Agric. Forest Meteorol. 310, 108629 (2021).

    Article 
    ADS 

    Google Scholar 

  • Weng, Y., Chang, S., Cai, W. & Wang, C. Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China. Appl. Energy 236, 514–525 (2019).

    Article 
    ADS 

    Google Scholar 

  • Rojas, O., Rembold, F., Royer, A. & Negre, T. Real-time agrometeorological crop yield monitoring in Eastern Africa. Agron. Sustain. Dev. 25, 63–77 (2005).

    Article 

    Google Scholar 

  • Rembold, F. et al. ASAP: A new global early warning system to detect anomaly hot spots of agricultural production for food security analysis. Agric. Syst. 168, 247–257 (2019).

    Article 

    Google Scholar 

  • Gohar, A. A., Cashman, A. & El-bardisy, H. A. H. Modeling the impacts of water-land allocation alternatives on food security and agricultural livelihoods in Egypt: Welfare analysis approach. Environ. Dev. 39, 100650 (2021).

    Article 

    Google Scholar 

  • Mekonnen, A., Tessema, A., Ganewo, Z. & Haile, A. Climate change impacts on household food security and farmers adaptation strategies. J. Agric. Food Res. 6, 100197 (2021).

    Article 

    Google Scholar 

  • Hervas, A. Mapping oil palm-related land use change in Guatemala, 2003–2019: Implications for food security. Land Use Policy 109, 105657 (2021).

    Article 

    Google Scholar 

  • Viana, C. M., Freire, D., Abrantes, P., Rocha, J. & Pereira, P. Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Sci. Total Environ. 806, 150718 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bazzana, D., Foltz, J. & Zhang, Y. Impact of climate smart agriculture on food security: An agent-based analysis. Food Policy 111, 102304 (2022).

    Article 

    Google Scholar 

  • Parven, A. et al. Impacts of disaster and land-use change on food security and adaptation: Evidence from the delta community in Bangladesh. Int. J. Disaster Risk Reduct. 78, 103119 (2022).

    Article 

    Google Scholar 

  • Mohajane, M. et al. Land use/land cover (LULC) using landsat data series (MSS, TM, ETM+ and OLI) in Azrou Forest, in the Central Middle Atlas of Morocco. Environments 5, 131 (2018).

    Article 

    Google Scholar 

  • Duarte, L., Teodoro, A. C., Sousa, J. J. & Pádua, L. QVigourMap: A GIS open source application for the creation of canopy vigour maps. Agronomy 11, 952 (2021).

    Article 

    Google Scholar 

  • Tavares, P. A., Beltrão, N. E. S., Guimarães, U. S. & Teodoro, A. C. Integration of sentinel-1 and sentinel-2 for classification and LULC mapping in the urban area of Belém, eastern Brazilian Amazon. Sensors 19, 1140 (2019).

    Article 
    ADS 

    Google Scholar 

  • Atuoye, K. N., Luginaah, I., Hambati, H. & Campbell, G. Who are the losers? Gendered-migration, climate change, and the impact of large scale land acquisitions on food security in coastal Tanzania. Land Use Policy 101, 105154 (2021).

    Article 

    Google Scholar 

  • Yang, S., Gu, L., Li, X., Jiang, T. & Ren, R. Crop classification method based on optimal feature selection and hybrid CNN-RF networks for multi-temporal remote sensing imagery. Remote Sens. 12, 3119 (2020).

    Article 
    ADS 

    Google Scholar 

  • Milojevic-Dupont, N. & Creutzig, F. Machine learning for geographically differentiated climate change mitigation in urban areas. Sustain. Cities Soc. 64, 102526 (2021).

    Article 

    Google Scholar 

  • Santos, D. et al. Spectral analysis to improve inputs to random forest and other boosted ensemble tree-based algorithms for detecting NYF Pegmatites in Tysfjord, Norway. Remote Sens. 14, 3532 (2022).

    Article 
    ADS 

    Google Scholar 

  • Hitouri, S. et al. Hybrid machine learning approach for gully erosion mapping susceptibility at a watershed scale. ISPRS Int. J. Geo Inf. 11, 401 (2022).

    Article 

    Google Scholar 

  • Alvarez-Mendoza, C. I., Teodoro, A., Freitas, A. & Fonseca, J. Spatial estimation of chronic respiratory diseases based on machine learning procedures—An approach using remote sensing data and environmental variables in quito, Ecuador. Appl. Geogr. 123, 102273 (2020).

    Article 

    Google Scholar 

  • Teodoro, A., Pais-Barbosa, J., Gonçalves, H., Veloso-Gomes, F. & Taveira-Pinto, F. Identification of beach features/patterns through image classification techniques applied to remotely sensed data. Int. J. Remote Sens. 32, 7399–7422 (2011).

    Article 

    Google Scholar 

  • Saleem, M. H., Potgieter, J. & Arif, K. M. Automation in agriculture by machine and deep learning techniques: A review of recent developments. Precis. Agric. 22, 2053–2091 (2021).

    Article 

    Google Scholar 

  • Carrasco, L., O’Neil, A. W., Morton, R. D. & Rowland, C. S. Evaluating combinations of temporally aggregated Sentinel-1, Sentinel-2 and Landsat 8 for land cover mapping with Google Earth Engine. Remote Sens. 11, 288 (2019).

    Article 
    ADS 

    Google Scholar 

  • Kumar, L. & Mutanga, O. Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sens. 10, 1509 (2018).

    Article 
    ADS 

    Google Scholar 

  • Kakooei, M., Nascetti, A. & Ban, Y. in IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium 6836–6839 (IEEE).

  • Castillo, E., Iglesias, A. & Ruiz-Cobo, R. Functional Equations in Applied Sciences (Elsevier, 2004).

    MATH 

    Google Scholar 

  • Zhao, G., Gao, H. & Cai, X. Estimating lake temperature profile and evaporation losses by leveraging MODIS LST data. Remote Sens. Environ. 251, 112104 (2020).

    Article 
    ADS 

    Google Scholar 

  • Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800 (2011).

    Article 
    ADS 

    Google Scholar 

  • Monteith, J. L. in Symposia of the society for experimental biology 205–234 (Cambridge University Press (CUP) Cambridge).

  • Kidd, C. et al. So, how much of the Earth’s surface is covered by rain gauges?. Bull. Am. Meteorol. Soc. 98, 69–78 (2017).

    Article 
    ADS 

    Google Scholar 

  • Huffman, G. J. et al. NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). In Algorithm Theoretical Basis Document (ATBD) Version 4 (2015).

  • Zhang, W., Cao, H. & Liang, Y. Plant uptake and soil fractionation of five ether-PFAS in plant-soil systems. Sci. Total Environ. 771, 144805 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jiang, S. et al. Effects of clouds and aerosols on ecosystem exchange, water and light use efficiency in a humid region orchard. Sci. Total Environ. 811, 152377 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ghimire, C., Bruijnzeel, L., Lubczynski, M. & Bonell, M. Negative trade-off between changes in vegetation water use and infiltration recovery after reforesting degraded pasture land in the Nepalese Lesser Himalaya. Hydrol. Earth Syst. Sci. 18, 4933–4949 (2014).

    Article 
    ADS 

    Google Scholar 

  • Zhang, J., Chen, H., Fu, Z. & Wang, K. Effects of vegetation restoration on soil properties along an elevation gradient in the karst region of southwest China. Agric. Ecosyst. Environ. 320, 107572 (2021).

    Article 
    CAS 

    Google Scholar 

  • Yan, W. Y., Shaker, A. & El-Ashmawy, N. Urban land cover classification using airborne LiDAR data: A review. Remote Sens. Environ. 158, 295–310 (2015).

    Article 
    ADS 

    Google Scholar 

  • LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, C. et al. Joint deep learning for land cover and land use classification. Remote Sens. Environ. 221, 173–187 (2019).

    Article 
    ADS 

    Google Scholar 

  • Interdonato, R., Ienco, D., Gaetano, R. & Ose, K. DuPLO: A DUal view Point deep Learning architecture for time series classificatiOn. ISPRS J. Photogramm. Remote. Sens. 149, 91–104 (2019).

    Article 
    ADS 

    Google Scholar 

  • Nyamekye, C., Ghansah, B., Agyapong, E. & Kwofie, S. Mapping changes in artisanal and small-scale mining (ASM) landscape using machine and deep learning algorithms—a proxy evaluation of the 2017 ban on ASM in Ghana. Environ. Chall. 3, 100053 (2021).

    Article 

    Google Scholar 

  • Rahmati, O. et al. Land subsidence modelling using tree-based machine learning algorithms. Sci. Total Environ. 672, 239–252 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980 (2014).

  • Gupta, A. A comprehensive guide on deep learning optimizers. Analytics Vidhya. Dostopno na: https://www.analyticsvidhya.com/blog/2021/10/acomprehensive-guide-on-deep-learningoptimizers/#:~:text=An%20optimizer%20is%20a%20function,loss%20and%20improve%20the%20accuracy [22 May 2022] (2021).

  • Reddy, V. K. & AV, R. K. Multi-channel neuro signal classification using Adam-based coyote optimization enabled deep belief network. Biomed. Signal Process. Control 77, 103774 (2022).

    Article 

    Google Scholar 

  • Pulatov, B., Linderson, M.-L., Hall, K. & Jönsson, A. M. Modeling climate change impact on potato crop phenology, and risk of frost damage and heat stress in northern Europe. Agric. For. Meteorol. 214, 281–292 (2015).

    Article 
    ADS 

    Google Scholar 

  • Parker, L., Pathak, T. & Ostoja, S. Climate change reduces frost exposure for high-value California orchard crops. Sci. Total Environ. 762, 143971 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Svystun, T., Lundströmer, J., Berlin, M., Westin, J. & Jönsson, A. M. Model analysis of temperature impact on the Norway spruce provenance specific bud burst and associated risk of frost damage. For. Ecol. Manage. 493, 119252 (2021).

    Article 

    Google Scholar 

  • Kheybari, S., Rezaie, F. M. & Farazmand, H. Analytic network process: An overview of applications. Appl. Math. Comput. 367, 124780 (2020).

    MATH 

    Google Scholar 

  • Saaty, T. The Analytic Hierarchy Process: Planning, Priority Setting Resource Allocation (McGraw-Hill, 1980).

    MATH 

    Google Scholar 

  • Saaty, T. L. & Ozdemir, M. S. The Encyclicon-Volume 1: A Dictionary of Decisions with Dependence and Feedback Based on the Analytic Network Process (RWS Publications, 2021).

    Google Scholar 

  • Saaty, T. L. Fundamentals of the analytic network process—Dependence and feedback in decision-making with a single network. J. Syst. Sci. Syst. Eng. 13, 129–157 (2004).

    Article 
    ADS 

    Google Scholar 

  • Chung, K. L. Markov Chains with Stationary Transition Probabilities 5–11 (Springer, 1960).

    Google Scholar 

  • Mokarram, M., Pourghasemi, H. R., Hu, M. & Zhang, H. Determining and forecasting drought susceptibility in southwestern Iran using multi-criteria decision-making (MCDM) coupled with CA–Markov model. Sci. Total Environ. 781, 146703 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Maleki, T., Koohestani, H. & Keshavarz, M. Can climate-smart agriculture mitigate the Urmia Lake tragedy in its eastern basin?. Agric. Water Manag. 260, 107256 (2022).

    Article 

    Google Scholar 

  • Rahmani, J. & Danesh-Yazdi, M. Quantifying the impacts of agricultural alteration and climate change on the water cycle dynamics in a headwater catchment of Lake Urmia Basin. Agric. Water Manag. 270, 107749 (2022).

    Article 

    Google Scholar 

  • Schmidt, M., Gonda, R. & Transiskus, S. Environmental degradation at Lake Urmia (Iran): Exploring the causes and their impacts on rural livelihoods. GeoJournal 86, 2149–2163 (2021).

    Article 

    Google Scholar 

  • Eimanifar, A. & Mohebbi, F. Urmia Lake (northwest Iran): A brief review. Saline Syst. 3, 1–8 (2007).

    Article 

    Google Scholar 

  • Shadkam, S., Ludwig, F., van Oel, P., Kirmit, Ç. & Kabat, P. Impacts of climate change and water resources development on the declining inflow into Iran’s Urmia Lake. J. Great Lakes Res. 42, 942–952 (2016).

    Article 

    Google Scholar 

  • Chaudhari, S., Felfelani, F., Shin, S. & Pokhrel, Y. Climate and anthropogenic contributions to the desiccation of the second largest saline lake in the twentieth century. J. Hydrol. 560, 342–353 (2018).

    Article 
    ADS 

    Google Scholar 

  • Khazaei, B. et al. Climatic or regionally induced by humans? Tracing hydro-climatic and land-use changes to better understand the Lake Urmia tragedy. J. Hydrol. 569, 203–217 (2019).

    Article 
    ADS 

    Google Scholar 

  • Schulz, S., Darehshouri, S., Hassanzadeh, E., Tajrishy, M. & Schüth, C. Climate change or irrigated agriculture—What drives the water level decline of Lake Urmia. Sci. Rep. 10, 1–10 (2020).

    Article 

    Google Scholar 

  • Azarnivand, A., Hashemi-Madani, F. S. & Banihabib, M. E. Extended fuzzy analytic hierarchy process approach in water and environmental management (case study: Lake Urmia Basin, Iran). Environ. Earth Sci. 73, 13–26 (2015).

    Article 
    ADS 

    Google Scholar 

  • Bonham-Carter, G. F. & Bonham-Carter, G. Geographic Information Systems for Geoscientists: Modelling with GIS (Elsevier, 1994).

    Google Scholar 

  • Garajeh, M. K. et al. An automated deep learning convolutional neural network algorithm applied for soil salinity distribution mapping in Lake Urmia, Iran. Sci. Total Environ. 778, 146253 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Preparing to be prepared

    Synapsid tracks with skin impressions illuminate the terrestrial tetrapod diversity in the earliest Permian of equatorial Pangea