in

Anaerobic methanotroph ‘Candidatus Methanoperedens nitroreducens’ has a pleomorphic life cycle

  • Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513 (2007).

    Article 
    CAS 

    Google Scholar 

  • Chadwick, G. L. et al. Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea. PLoS Biol. 20, e3001508 (2022).

    Article 

    Google Scholar 

  • Haroon, M. F. et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570 (2013).

    Article 
    CAS 

    Google Scholar 

  • Hallam, S. J. et al. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305, 1457–1462 (2004).

    Article 
    CAS 

    Google Scholar 

  • McGlynn, S. E. Energy metabolism during anaerobic methane oxidation in ANME Archaea. Microbes Environ. 32, 5–13 (2017).

    Article 

    Google Scholar 

  • Beal, E. J., House, C. H. & Orphan, V. J. Manganese- and iron-dependent marine methane oxidation. Science 325, 184–187 (2009).

    Article 
    CAS 

    Google Scholar 

  • McGlynn, S. E., Chadwick, G. L., Kempes, C. P. & Orphan, V. J. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531–535 (2015).

    Article 
    CAS 

    Google Scholar 

  • Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H. E. & Boetius, A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590 (2015).

    Article 
    CAS 

    Google Scholar 

  • Cai, C. et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J. 12, 1929–1939 (2018).

    Article 
    CAS 

    Google Scholar 

  • Ettwig, K. F. et al. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc. Natl Acad. Sci. USA 113, 12792–12796 (2016).

    Article 
    CAS 

    Google Scholar 

  • Leu, A. O. et al. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. ISME J. 14, 1030–1041 (2020).

    Article 
    CAS 

    Google Scholar 

  • Leu, A. O. et al. Lateral gene transfer drives metabolic flexibility in the anaerobic methane-oxidizing archaeal family Methanoperedenaceae. mBio 11, e01325-20 (2020).

  • Cai, C. et al. Response of the anaerobic methanotrophic archaeon Candidatus ‘Methanoperedens nitroreducens’ to the long-term ferrihydrite amendment. Front. Microbiol. 13, 799859 (2022).

  • Arshad, A. et al. A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by Methanoperedens-like Archaea. Front. Microbiol. 6, 1423 (2015).

    Article 

    Google Scholar 

  • Raghoebarsing, A. A. et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918–921 (2006).

    Article 
    CAS 

    Google Scholar 

  • Walker, D. J. F. et al. The archaellum of Methanospirillum hungatei is electrically conductive. mBio 10, e00579-19 (2019).

    Article 
    CAS 

    Google Scholar 

  • Krukenberg, V. et al. Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia. Environ. Microbiol. 20, 1651–1666 (2018).

    Article 
    CAS 

    Google Scholar 

  • Schubert, C. J. et al. Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). FEMS Microbiol. Ecol. 76, 26–38 (2011).

    Article 
    CAS 

    Google Scholar 

  • Stahl, D. A. & Amann, R. in Nucleic Acid Techniques in Bacterial Systematics (eds Stackebrandt, E. & Goodfellow, M.) 205–248 (Wiley, 1991).

  • Wallner, G., Amann, R. & Beisker, W. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14, 136–143 (1993).

    Article 
    CAS 

    Google Scholar 

  • Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome- assembled genome (MIMAG) of Bacteria and Archaea. Nat. Biotechnol. 36, 660 (2018).

    Article 
    CAS 

    Google Scholar 

  • Vo, C. H., Goyal, N., Karimi, I. A. & Kraft, M. First observation of an acetate switch in a methanogenic autotroph (Methanococcus maripaludis S2). Microbiol. Insights 13, 1178636120945300 (2020).

    Article 

    Google Scholar 

  • Cai, C. et al. Acetate production from anaerobic oxidation of methane via intracellular storage compounds. Environ. Sci. Technol. 53, 7371–7379 (2019).

    Article 
    CAS 

    Google Scholar 

  • Ratcliff, W. C. & Denison, R. F. Bacterial persistence and bet hedging in Sinorhizobium meliloti. Commun. Integr. Biol. 4, 98–100 (2011).

    Article 
    CAS 

    Google Scholar 

  • Ma, K., Schicho, R. N., Kelly, R. M. & Adams, M. W. Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. Proc. Natl Acad. Sci. USA 90, 5341–5344 (1993).

    Article 
    CAS 

    Google Scholar 

  • Simon, G.-C. et al. Response of the anaerobic methanotroph “Candidatus Methanoperedens nitroreducens” to oxygen stress. Appl. Environ. Microbiol. 84, e01832-18 (2018).

    Google Scholar 

  • van der Star, W. R. L. et al. The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnol. Bioeng. 101, 286–294 (2008).

    Article 

    Google Scholar 

  • Duggin, I. G. et al. CetZ tubulin-like proteins control archaeal cell shape. Nature 519, 362–365 (2015).

    Article 
    CAS 

    Google Scholar 

  • Schwarzer, S., Rodriguez-Franco, M., Oksanen, H. M. & Quax, T. E. F. Growth phase dependent cell shape of Haloarcula. Microorganisms 9, 231 (2021).

    Article 
    CAS 

    Google Scholar 

  • Dang, H. Y. & Lovell, C. R. Microbial surface colonization and biofilm development in marine environments. Microbiol. Mol. Biol. Rev. 80, 91–138 (2016).

    Article 
    CAS 

    Google Scholar 

  • Howard-Varona, C., Hargreaves, K. R., Abedon, S. T. & Sullivan, M. B. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11, 1511–1520 (2017).

    Article 

    Google Scholar 

  • Pires, D. P., Melo, L. D. R. & Azeredo, J. Understanding the complex phage–host interactions in biofilm communities. Annu. Rev. Virol. 8, 73–94 (2021).

  • Canchaya, C., Proux, C., Fournous, G., Bruttin, A. & Brüssow, H. Prophage genomics. Microbiol. Mol. Biol. Rev. 67, 238–276 (2003).

    Article 
    CAS 

    Google Scholar 

  • Zhang, X. et al. Polyhydroxyalkanoate-driven current generation via acetate by an anaerobic methanotrophic consortium. Water Res. 221, 118743 (2022).

    Article 
    CAS 

    Google Scholar 

  • Knittel, K., Lösekann, T., Boetius, A., Kort, R. & Amann, R. Diversity and distribution of methanotrophic Archaea at cold seeps. Appl. Environ. Microbiol. 71, 467–479 (2005).

    Article 
    CAS 

    Google Scholar 

  • Orphan, V. J., House, C. H., Hinrichs, K.-U., McKeegan, K. D. & DeLong, E. F. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc. Natl Acad. Sci. USA 99, 7663–7668 (2002).

    Article 
    CAS 

    Google Scholar 

  • Orphan, V. J. et al. Geological, geochemical, and microbiological heterogeneity of the seafloor around methane vents in the Eel River Basin, offshore California. Chem. Geol. 205, 265–289 (2004).

    Article 
    CAS 

    Google Scholar 

  • Ackermann, M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 13, 497–508 (2015).

    Article 
    CAS 

    Google Scholar 

  • Robinson, R. W. Life cycles in the methanogenic archaebacterium Methanosarcina mazei. Appl. Environ. Microbiol. 52, 17–27 (1986).

    Article 
    CAS 

    Google Scholar 

  • Daims, H., Stoecker, K. & Wagner, M. in Molecular Microbial Ecology (eds Osborn, A. M. & Smith, C. J.) 213–239 (Taylor & Francis, 2005).

  • Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).

    Article 
    CAS 

    Google Scholar 

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Article 
    CAS 

    Google Scholar 

  • Yilmaz, L. S., Parnerkar, S. & Noguera, D. R. mathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Appl. Environ. Microbiol. 77, 1118–1122 (2011).

    Article 
    CAS 

    Google Scholar 

  • Stoecker, K., Dorninger, C., Daims, H. & Wagner, M. Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl. Environ. Microbiol. 76, 922–926 (2010).

    Article 
    CAS 

    Google Scholar 

  • Fuchs, B. M., Glockner, F. O., Wulf, J. & Amann, R. Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Appl. Environ. Microbiol. 66, 3603–3607 (2000).

    Article 
    CAS 

    Google Scholar 

  • Manz, W., Amann, R., Ludwig, W., Wagner, M. & Schleifer, K.-H. Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst. Appl. Microbiol. 15, 593–600 (1992).

    Article 

    Google Scholar 

  • Ostle, A. G. & Holt, J. G. Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl. Environ. Microbiol. 44, 238–241 (1982).

    Article 
    CAS 

    Google Scholar 

  • Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).

    Article 
    CAS 

    Google Scholar 

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article 
    CAS 

    Google Scholar 

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 1091 (2019).

    Article 
    CAS 

    Google Scholar 

  • Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article 
    CAS 

    Google Scholar 

  • Eren, A. M., Vineis, J. H., Morrison, H. G. & Sogin, M. L. A filtering method to generate high quality short reads using Illumina paired-end technology. PLoS ONE 8, e66643 (2013).

    Article 

    Google Scholar 

  • Minoche, A. E., Dohm, J. C. & Himmelbauer, H. Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol. 12, R112 (2011).

  • Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Article 
    CAS 

    Google Scholar 

  • Warren, R. L. et al. LINKS: scalable, alignment-free scaffolding of draft genomes with long reads. GigaScience 4, 35 (2015).

    Article 

    Google Scholar 

  • Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).

    Article 

    Google Scholar 

  • Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350–3352 (2015).

    Article 
    CAS 

    Google Scholar 

  • Wick, R. R. et al. Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biol. 22, 266 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).

    Article 
    CAS 

    Google Scholar 

  • Wick, R. R. & Holt, K. E. Benchmarking of long-read assemblers for prokaryote whole genome sequencing. F1000Res. 8, 2138 (2021).

  • Vaser, R. & Šikić, M. Time- and memory-efficient genome assembly with Raven. Nat. Comput. Sci. 1, 332–336 (2021).

    Article 

    Google Scholar 

  • Wick, R. R. & Holt, K. E. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Comput. Biol. 18, e1009802 (2022).

    Article 
    CAS 

    Google Scholar 

  • Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).

    Google Scholar 

  • Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article 
    CAS 

    Google Scholar 

  • Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. Preprint at bioRxiv https://doi.org/10.1101/201178 (2017).

    Article 

    Google Scholar 

  • Heller, D. & Vingron, M. SVIM: structural variant identification using mapped long reads. Bioinformatics 35, 2907–2915 (2019).

    Article 
    CAS 

    Google Scholar 

  • Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article 
    CAS 

    Google Scholar 

  • Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article 
    CAS 

    Google Scholar 

  • Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R. & Wu, C. H. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23, 1282–1288 (2007).

    Article 
    CAS 

    Google Scholar 

  • Tatusov, R. L. et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41 (2003).

    Article 

    Google Scholar 

  • Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2016).

    Article 
    CAS 

    Google Scholar 

  • Haft, D. H. et al. TIGRFAMs and genome properties in 2013. Nucleic Acids Res. 41, D387–D395 (2013).

    Article 
    CAS 

    Google Scholar 

  • Zhou, Z. et al. METABOLIC: high-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks. Microbiome 10, 33 (2022).

    Article 
    CAS 

    Google Scholar 

  • Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    Article 
    CAS 

    Google Scholar 

  • Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 32, D138–D141 (2004).

    Article 
    CAS 

    Google Scholar 

  • Amann, R. I. et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–1925 (1990).

    Article 
    CAS 

    Google Scholar 

  • Daims, H., Brühl, A., Amann, R., Schleifer, K. H. & Wagner, M. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 434–444 (1999).

    Article 
    CAS 

    Google Scholar 

  • Schmid, M. C. et al. Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria. Appl. Environ. Microbiol. 71, 1677–1684 (2005).

    Article 
    CAS 

    Google Scholar 

  • Yu, N. Y. et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26, 1608–1615 (2010).

    Article 
    CAS 

    Google Scholar 

  • Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795 (2004).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Moving water and earth

    Study: Extreme heat is changing habits of daily life