in

Artificial intelligence for automated detection of large mammals creates path to upscale drone surveys

  • Chapman, A. It’s okay to call them drones. J. Unmanned Veh. Syst. 2, iii–v (2014).

    Article 

    Google Scholar 

  • Chabot, D., Hodgson, A. J., Hodgson, J. C. & Anderson, K. ‘Drone’: Technically correct, popularly accepted, socially acceptable. Drone Syst. Appl. 10, 399–405 (2022).

    Article 

    Google Scholar 

  • Chabot, D. & Bird, D. M. Wildlife research and management methods in the 21st century: Where do unmanned aircraft fit in?. J. Unmanned Veh. Syst. 3, 137–155 (2015).

    Article 

    Google Scholar 

  • Christie, K. S., Gilbert, S. L., Brown, C. L., Hatfield, M. & Hanson, L. Unmanned aircraft systems in wildlife research: Current and future applications of a transformative technology. Front. Ecol. Environ. 14, 241–251 (2016).

    Article 

    Google Scholar 

  • Whitehead, K. & Hugenholtz, C. H. Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: A review of progress and challenges. J. Unmanned Veh. Syst. 2, 69–85 (2014).

    Article 

    Google Scholar 

  • Barnas, A. et al. Evaluating behavioral responses of nesting lesser snow geese to unmanned aircraft surveys. Ecol. Evol. 8, 1328–1338 (2018).

    Article 

    Google Scholar 

  • Mulero-Pázmány, M. et al. Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review. PLoS ONE 12, e0178448 (2017).

    Article 

    Google Scholar 

  • Linchant, J., Lisein, J., Semeki, J., Lejeune, P. & Vermeulen, C. Are unmanned aircraft systems (UAS s) the future of wildlife monitoring? A review of accomplishments and challenges. Mammal Rev. 45, 239–252 (2015).

    Article 

    Google Scholar 

  • Whitehead, K. et al. Remote sensing of the environment with small unmanned aircraft systems (UASs), part 2: Scientific and commercial applications. J. Unmanned Veh. Syst. 2, 86–102 (2014).

    Article 

    Google Scholar 

  • Barasona, J. A. et al. Unmanned aircraft systems for studying spatial abundance of ungulates: Relevance to spatial epidemiology. PLoS ONE 9, e115608 (2014).

    Article 
    ADS 

    Google Scholar 

  • Chrétien, L. P., Théau, J. & Ménard, P. Wildlife multispecies remote sensing using visible and thermal infrared imagery acquired from an unmanned aerial vehicle (UAV). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 40, 241 (2015).

    Article 

    Google Scholar 

  • Guo, X. et al. Application of UAV remote sensing for a population census of large wild herbivores—Taking the headwater region of the yellow river as an example. Remote Sens. 10, 1041 (2018).

    Article 
    ADS 

    Google Scholar 

  • Hu, J., Wu, X. & Dai, M. Estimating the population size of migrating Tibetan antelopes Pantholops hodgsonii with unmanned aerial vehicles. Oryx 54, 101–109 (2020).

    Article 

    Google Scholar 

  • Mulero-Pázmány, M., Stolper, R., Van Essen, L. D., Negro, J. J. & Sassen, T. Remotely piloted aircraft systems as a rhinoceros anti-poaching tool in Africa. PLoS ONE 9, e83873 (2014).

    Article 
    ADS 

    Google Scholar 

  • Rey, N., Volpi, M., Joost, S. & Tuia, D. Detecting animals in African Savanna with UAVs and the crowds. Remote Sens. Environ. 200, 341–351 (2017).

    Article 
    ADS 

    Google Scholar 

  • Schroeder, N. M., Panebianco, A., Gonzalez Musso, R. & Carmanchahi, P. An experimental approach to evaluate the potential of drones in terrestrial mammal research: A gregarious ungulate as a study model. R. Soc. Open Sci. 7, 191482 (2020).

    Article 
    ADS 

    Google Scholar 

  • Su, X. et al. Using an unmanned aerial vehicle (UAV) to study wild yak in the highest desert in the world. Int. J. Remote Sens. 39, 5490–5503 (2018).

    Article 

    Google Scholar 

  • Vermeulen, C., Lejeune, P., Lisein, J., Sawadogo, P. & Bouché, P. Unmanned aerial survey of elephants. PLoS ONE 8, e54700 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mallory, M. L. et al. Financial costs of conducting science in the Arctic: Examples from seabird research. Arct. Sci. 4, 624–633 (2018).

    Article 

    Google Scholar 

  • Sasse, D. B. Job-related mortality of wildlife workers in the United States, 1937–2000. Wildl. Soc. Bull. 31, 1015–1020 (2003).

    Google Scholar 

  • Loarie, S. R., Joppa, L. N. & Pimm, S. L. Satellites miss environmental priorities. Trends Ecol. Evol. 22, 630–632 (2007).

    Article 

    Google Scholar 

  • IUCN. The IUCN Red List of Threatened Species. IUCN Red List of Threatened Species https://www.iucnredlist.org/en (2021).

  • Mech, L. D. & Barber, S. M. A critique of wildlife radio-tracking and its use in National Parks: a report to the National Park Service. (2002).

  • Patterson, C., Koski, W., Pace, P., McLuckie, B. & Bird, D. M. Evaluation of an unmanned aircraft system for detecting surrogate caribou targets in Labrador. J. Unmanned Veh. Syst. 4, 53–69 (2015).

    Article 

    Google Scholar 

  • Hodgson, J. C. et al. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evol. 9, 1160–1167 (2018).

    Article 

    Google Scholar 

  • Seymour, A. C., Dale, J., Hammill, M., Halpin, P. N. & Johnston, D. W. Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery. Sci. Rep. 7, 1–10 (2017).

    Article 

    Google Scholar 

  • COSEWIC. COSEWIC assessment and status report on the caribou (Rangifer tarandus) eastern migratory population, Torngat mountain population in Canada. (COSEWIC, Committee on the Status of Endangered Wildlife in Canada, 2017).

  • Albawi, S., Mohammed, T. A. & Al-Zawi, S. Understanding of a convolutional neural network. in 2017 international conference on engineering and technology (ICET) 1–6 (IEEE, 2017).

  • Gu, J. et al. Recent advances in convolutional neural networks. Pattern Recognit. 77, 354–377 (2018).

    Article 
    ADS 

    Google Scholar 

  • Teuwen, J. & Moriakov, N. Convolutional neural networks. in Handbook of medical image computing and computer assisted intervention 481–501 (Elsevier, 2020).

  • Corcoran, E., Winsen, M., Sudholz, A. & Hamilton, G. Automated detection of wildlife using drones: Synthesis, opportunities and constraints. Methods Ecol. Evol. 12, 1103–1114 (2021).

    Article 

    Google Scholar 

  • Corcoran, E., Denman, S., Hanger, J., Wilson, B. & Hamilton, G. Automated detection of koalas using low-level aerial surveillance and machine learning. Sci. Rep. 9, 3208 (2019).

    Article 
    ADS 

    Google Scholar 

  • Gray, P. C. et al. Drones and convolutional neural networks facilitate automated and accurate cetacean species identification and photogrammetry. Methods Ecol. Evol. 10, 1490–1500 (2019).

    Article 

    Google Scholar 

  • Gray, P. C. et al. A convolutional neural network for detecting sea turtles in drone imagery. Methods Ecol. Evol. 10, 345–355 (2019).

    Article 

    Google Scholar 

  • Peng, J. et al. Wild animal survey using UAS imagery and deep learning: modified Faster R-CNN for kiang detection in Tibetan Plateau. ISPRS J. Photogramm. Remote Sens. 169, 364–376 (2020).

    Article 
    ADS 

    Google Scholar 

  • Borowicz, A. et al. Multi-modal survey of Adélie penguin mega-colonies reveals the Danger Islands as a seabird hotspot. Sci. Rep. 8, 3926 (2018).

    Article 
    ADS 

    Google Scholar 

  • Francis, R. J., Lyons, M. B., Kingsford, R. T. & Brandis, K. J. Counting mixed breeding aggregations of animal species using drones: Lessons from waterbirds on semi-automation. Remote Sens. 12, 1185 (2020).

    Article 
    ADS 

    Google Scholar 

  • Santangeli, A. et al. Integrating drone-borne thermal imaging with artificial intelligence to locate bird nests on agricultural land. Sci. Rep. 10, 1–8 (2020).

    Article 

    Google Scholar 

  • Bowley, C., Mattingly, M., Barnas, A., Ellis-Felege, S. & Desell, T. An analysis of altitude, citizen science and a convolutional neural network feedback loop on object detection in unmanned aerial systems. J. Comput. Sci. 34, 102–116 (2019).

    Article 

    Google Scholar 

  • Bowley, C., Mattingly, M., Barnas, A., Ellis-Felege, S. & Desell, T. Detecting wildlife in unmanned aerial systems imagery using convolutional neural networks trained with an automated feedback loop. in International Conference on Computational Science 69–82 (Springer, 2018).

  • Delplanque, A., Foucher, S., Lejeune, P., Linchant, J. & Théau, J. Multispecies detection and identification of African mammals in aerial imagery using convolutional neural networks. Remote Sens. Ecol. Conserv. 8, 166–179 (2021).

    Article 

    Google Scholar 

  • Eikelboom, J. A. J. et al. Improving the precision and accuracy of animal population estimates with aerial image object detection. Methods Ecol. Evol. 10, 1875–1887 (2019).

    Article 

    Google Scholar 

  • Kellenberger, B., Marcos, D. & Tuia, D. Detecting mammals in UAV images: Best practices to address a substantially imbalanced dataset with deep learning. Remote Sens. Environ. 216, 139–153 (2018).

    Article 
    ADS 

    Google Scholar 

  • Hooge, I. T. C., Niehorster, D. C., Nyström, M., Andersson, R. & Hessels, R. S. Is human classification by experienced untrained observers a gold standard in fixation detection?. Behav. Res. Methods 50, 1864–1881 (2018).

    Article 

    Google Scholar 

  • Barnas, A. F., Darby, B. J., Vandeberg, G. S., Rockwell, R. F. & Ellis-Felege, S. N. A comparison of drone imagery and ground-based methods for estimating the extent of habitat destruction by lesser snow geese (Anser caerulescens caerulescens) in La Pérouse Bay. PLoS ONE 14, e0217049 (2019).

    Article 
    CAS 

    Google Scholar 

  • Brook, R. K. & Kenkel, N. C. A multivariate approach to vegetation mapping of Manitoba’s Hudson Bay Lowlands. Int. J. Remote Sens. 23, 4761–4776 (2002).

    Article 

    Google Scholar 

  • Shilts, W. W., Aylsworth, J. M., Kaszycki, C. A., Klassen, R. A. & Graf, W. L. Canadian shield. in Geomorphic Systems of North America vol. 2 119–161 (Geological Society of America Boulder, Colorado, 1987).

  • Barnas, A. F., Felege, C. J., Rockwell, R. F. & Ellis-Felege, S. N. A pilot (less) study on the use of an unmanned aircraft system for studying polar bears (Ursus maritimus). Polar Biol. 41, 1055–1062 (2018).

    Article 

    Google Scholar 

  • Ellis-Felege, S. N. et al. Nesting common eiders (Somateria mollissima) show little behavioral response to fixed-wing drone surveys. J. Unmanned Veh. Syst. 10, 1–4 (2021).

    Google Scholar 

  • Barnas, A. F. et al. A standardized protocol for reporting methods when using drones for wildlife research. J. Unmanned Veh. Syst. 8, 89–98 (2020).

    Article 

    Google Scholar 

  • Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28, 91–99 (2016).

    Google Scholar 

  • Chen, T., Xu, B., Zhang, C. & Guestrin, C. Training Deep Nets with Sublinear Memory Cost. ArXiv160406174 Cs (2016).

  • Pinckaers, H. & Litjens, G. Training convolutional neural networks with megapixel images. ArXiv180405712 Cs (2018).

  • Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems. (2015).

  • Janocha, K. & Czarnecki, W. M. On loss functions for deep neural networks in classification. ArXiv Prepr. ArXiv170205659. (2017).

  • Murata, N., Yoshizawa, S. & Amari, S. Learning curves, model selection and complexity of neural networks. Adv. Neural Inf. Process. Syst. 5, 607–614 (1992).

    Google Scholar 

  • Hänsch, R. & Hellwich, O. The truth about ground truth: Label noise in human-generated reference data. in IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium 5594–5597 (IEEE, 2019).

  • Bowler, E., Fretwell, P. T., French, G. & Mackiewicz, M. Using deep learning to count albatrosses from space: Assessing results in light of ground truth uncertainty. Remote Sens. 12, 2026 (2020).

    Article 
    ADS 

    Google Scholar 

  • Brack, I. V., Kindel, A. & Oliveira, L. F. B. Detection errors in wildlife abundance estimates from Unmanned Aerial Systems (UAS) surveys: Synthesis, solutions, and challenges. Methods Ecol. Evol. 9, 1864–1873 (2018).

    Article 

    Google Scholar 

  • Jagielski, P. M. et al. The utility of drones for studying polar bear behaviour in the Canadian Arctic: Opportunities and recommendations. Drone Syst. Appl. 10, 97–110 (2022).

    Article 

    Google Scholar 

  • Williams, P. J., Hooten, M. B., Womble, J. N. & Bower, M. R. Estimating occupancy and abundance using aerial images with imperfect detection. Methods Ecol. Evol. 8, 1679–1689 (2017).

    Article 

    Google Scholar 

  • Link, W. A., Schofield, M. R., Barker, R. J. & Sauer, J. R. On the robustness of N-mixture models. Ecology 99, 1547–1551 (2018).

    Article 

    Google Scholar 

  • Horvitz, D. G. & Thompson, D. J. A generalization of sampling without replacement from a finite universe. J. Am. Stat. Assoc. 47, 663–685 (1952).

    Article 
    MATH 

    Google Scholar 

  • Corcoran, E., Denman, S. & Hamilton, G. New technologies in the mix: Assessing N-mixture models for abundance estimation using automated detection data from drone surveys. Ecol. Evol. 10, 8176–8185 (2020).

    Article 

    Google Scholar 

  • Lunga, D., Arndt, J., Gerrand, J. & Stewart, R. ReSFlow: A remote sensing imagery data-flow for improved model generalization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 10468–10483 (2021).

    Article 
    ADS 

    Google Scholar 

  • Fromm, M., Schubert, M., Castilla, G., Linke, J. & McDermid, G. Automated detection of conifer seedlings in drone imagery using convolutional neural networks. Remote Sens. 11, 2585 (2019).

    Article 
    ADS 

    Google Scholar 

  • Velumani, K. et al. Estimates of maize plant density from UAV RGB images using Faster-RCNN detection model: Impact of the spatial resolution. Plant Phenomics 2021, 9824843 (2021).

    Article 
    CAS 

    Google Scholar 

  • Hodgson, A., Peel, D. & Kelly, N. Unmanned aerial vehicles for surveying marine fauna: Assessing detection probability. Ecol. Appl. 27, 1253–1267 (2017).

    Article 

    Google Scholar 

  • Ferguson, M. C. et al. Performance of manned and unmanned aerial surveys to collect visual data and imagery for estimating arctic cetacean density and associated uncertainty. J. Unmanned Veh. Syst. 6, 128–154 (2018).

    Article 

    Google Scholar 

  • Zmarz, A. et al. Application of UAV BVLOS remote sensing data for multi-faceted analysis of Antarctic ecosystem. Remote Sens. Environ. 217, 375–388 (2018).

    Article 
    ADS 

    Google Scholar 

  • Lyons, M. B. et al. Monitoring large and complex wildlife aggregations with drones. Methods Ecol. Evol. 10, 1024–1035 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Half a century of rising extinction risk of coral reef sharks and rays

    Preparing to be prepared