in

Artificial lighting affects the landscape of fear in a widely distributed shorebird

[adace-ad id="91168"]
  • Brown, J. S., Laundre, J. W. & Gurung, M. The ecology of fear: optimal foraging, game theory, and trophic interactions. J. Mammal. 80, 385–399 (1999).

    Google Scholar 

  • Laundré, J. W., Hernández, L. & Altendorf, K. B. Wolves, elk, and bison: reestablishing the ‘landscape of fear’ in Yellowstone National Park, US.A. Can. J. Zool. 79, 1401–1409 (2001).

    Google Scholar 

  • Atkins, J. L. et al. Cascading impacts of large-carnivore extirpation in an African ecosystem. Science 364, 173–177 (2019).

    CAS 

    Google Scholar 

  • Laundre, J. W., Hernandez, L. & Ripple, W. J. The landscape of fear: ecological implications of being afraid. Open Ecol. J. 3, 1–7 (2010).

    Google Scholar 

  • Loggins, A. A., Shrader, A. M., Monadjem, A. & McCleery, R. A. Shrub cover homogenizes small mammals’ activity and perceived predation risk. Sci. Rep. 9, 16857 (2019).

    Google Scholar 

  • Whittingham, M. J. & Evans, K. L. The effects of habitat structure on predation risk of birds in agricultural landscapes. Ibis 146, 210–220 (2004).

    Google Scholar 

  • Marshall, K. L. A., Philpot, K. E. & Stevens, M. Microhabitat choice in island lizards enhances camouflage against avian predators. Sci. Rep. 6, 19815 (2016).

    CAS 

    Google Scholar 

  • Stevens, M., Troscianko, J., Wilson-Aggarwal, J. K. & Spottiswoode, C. N. Improvement of individual camouflage through background choice in ground-nesting birds. Nat. Ecol. Evol. 1, 1325–1333 (2017).

    Google Scholar 

  • Wilson-Aggarwal, J. K., Troscianko, J. T., Stevens, M. & Spottiswoode, C. N. Escape distance in ground-nesting birds differs with individual level of camouflage. Am. Nat. 188, 231–239 (2016).

    Google Scholar 

  • Troscianko, J., Wilson-Aggarwal, J., Stevens, M. & Spottiswoode, C. N. Camouflage predicts survival in ground-nesting birds. Sci. Rep. 6, 19966 (2016).

    CAS 

    Google Scholar 

  • Gaston, K. J., Duffy, J. P., Gaston, S., Bennie, J. & Davies, T. W. Human alteration of natural light cycles: causes and ecological consequences. Oecologia 176, 917–931 (2014).

    Google Scholar 

  • Gaston, K. J., Davies, T. W., Nedelec, S. L. & Holt, L. A. Impacts of artificial light at night on biological timings. Annu. Rev. Ecol. Evol. Syst. 48, 49–68 (2017).

    Google Scholar 

  • Falchi, F. et al. The new world atlas of artificial night sky brightness. Sci. Adv. 2, e1600377 (2016).

    Google Scholar 

  • Gaston, K. J. et al. Pervasiveness of biological impacts of artificial light at night. Integr. Comp. Biol. 61, 1098–1110 (2021).

    Google Scholar 

  • Sanders, D., Frago, E., Kehoe, R., Patterson, C. & Gaston, K. J. A meta-analysis of biological impacts of artificial light at night. Nat. Ecol. Evol. 5, 74–81 (2021).

    Google Scholar 

  • Kronfeld-Schor, N., Visser, M. E., Salis, L. & van Gils, J. A. Chronobiology of interspecific interactions in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160248 (2017).

    Google Scholar 

  • Underwood, C. N., Davies, T. W. & Queir Os, A. M. Artificial light at night alters trophic interactions of intertidal invertebrates. J. Anim. Ecol. 86, 781–789 (2017).

    Google Scholar 

  • Burger, J., Howe, M. A., Hahn, D. C. & Chase, J. Effects of tide cycles on habitat selection and habitat partitioning by migrating shorebirds. Auk 94, 743–758 (1977).

    Google Scholar 

  • Granadeiro, J. P., Dias, M. P., Martins, R. C. & Palmeirim, J. M. Variation in numbers and behaviour of waders during the tidal cycle: implications for the use of estuarine sediment flats. Acta Oecologica 29, 293–300 (2006).

    Google Scholar 

  • Lourenço, P. M. et al. The energetic importance of night foraging for waders wintering in a temperate estuary. Acta Oecologica 34, 122–129 (2008).

    Google Scholar 

  • McNeil, R., Drapeau, P. & Goss-Custard, J. D. The occurrence and adaptive significance of nocturnal habits in waterfowl. Biol. Rev. 67, 381–419 (1992).

    Google Scholar 

  • Martin, G. R. Visual fields and their functions in birds. J. Ornithol. 148, 547–562 (2007).

    Google Scholar 

  • Martin, G. R. What is binocular vision for? A birds’ eye view. J. Vis. 9, 1–19 (2009).

    Google Scholar 

  • Davies, T. W., Duffy, J. P., Bennie, J. & Gaston, K. J. The nature, extent, and ecological implications of marine light pollution. Front. Ecol. Environ. 12, 347–355 (2014).

    Google Scholar 

  • Leopold, M. F., Philippart, C. J. M. & Yorio, P. Nocturnal feeding under artificial light conditions by Brown-hooded Gull (Larus maculipennis) in Puerto Madryn harbour (Chubut Province, Argentina). Hornero 25, 55–60 (2010).

    Google Scholar 

  • Pugh, A. R. & Pawson, S. M. Artificial light at night potentially alters feeding behaviour of the native southern black-backed gull (Larus dominicanus). Notornis 63, 37–39 (2016).

    Google Scholar 

  • Santos, C. D. et al. Effects of artificial illumination on the nocturnal foraging of waders. Acta Oecologica 36, 166–172 (2010).

    Google Scholar 

  • Montevecchi, W. A. Influences of Artificial Light on Marine Birds. in Ecological Consequences of Artificial Night Lighting (eds. Rich, C. & Longcore, T.) 94–113 (Island Press, 2006).

  • Dwyer, R. G., Bearhop, S., Campbell, H. A. & Bryant, D. M. Shedding light on light: benefits of anthropogenic illumination to a nocturnally foraging shorebird. J. Anim. Ecol. 82, 478–485 (2013).

    Google Scholar 

  • Blumstein, D. T. Developing an evolutionary ecology of fear: how life history and natural history traits affect disturbance tolerance in birds. Anim. Behav. 71, 389–399 (2006).

    Google Scholar 

  • Stankowich, T. & Blumstein, D. T. Fear in animals: a meta-analysis and review of risk assessment. Proc. R. Soc. B Biol. Sci. 272, 2627–2634 (2005).

    Google Scholar 

  • Caro, T. Antipredator Defenses in Birds and Mammals. (University of Chicago Press, 2005).

  • Tillmann, J. E. Fear of the dark: night-time roosting and anti-predation behaviour in the grey partridge (Perdix perdix L.). Behaviour 146, 999–1023 (2009).

    Google Scholar 

  • IUCN. The IUCN Red List of Threatened Species. Version 2022-1. https://www.iucnredlist.org/species/22693190/117917038 (2022).

  • Brown, D. et al. The Eurasian Curlew—the most pressing bird conservation priority in the UK? Br. Birds 108, 660–668 (2015).

    Google Scholar 

  • Franks, S. E., Douglas, D. J. T., Gillings, S. & Pearce-Higgins, J. W. Environmental correlates of breeding abundance and population change of Eurasian Curlew Numenius arquata in Britain. Bird. Study 64, 393–409 (2017).

    Google Scholar 

  • Desholm, M. & Kahlert, J. Avian collision risk at an offshore wind farm. Biol. Lett. 1, 296–298 (2005).

    Google Scholar 

  • Clarke, J. A. Moonlight’s influence on predator/prey interactions between short-eared owls (Asio flammeus) and Deermice (Peromyscus maniculatus). Behav. Ecol. Sociobiol. 13, 205–209 (1983).

    Google Scholar 

  • Mandelik, Y., Jones, M. & Dayan, T. Structurally complex habitat and sensory adaptations mediate the behavioural responses of a desert rodent to an indirect cue for increased predation risk. Evol. Ecol. Res. 5, 501–515 (2003).

    Google Scholar 

  • Alexander, R. D. The Evolution of Social Behavior | Annual Review of Ecology, Evolution, and Systematics. Annu. Rev. Ecol. Syst. 5, 325–383 (1974).

    Google Scholar 

  • Pulliam, H. R. On the advantages of flocking. J. Theor. Biol. 38, 419–422 (1973).

    CAS 

    Google Scholar 

  • Barnard, C. J. Flock feeding and time budgets in the house sparrow (Passer domesticus L.). Anim. Behav. 28, 295–309 (1980).

    Google Scholar 

  • Cooper, W. E. Jr. et al. Effects of risk, cost, and their interaction on optimal escape by nonrefuging Bonaire whiptail lizards, Cnemidophorus murinus. Behav. Ecol. 14, 288–293 (2003).

    Google Scholar 

  • Lagos, P. A. et al. Flight initiation distance is differentially sensitive to the costs of staying and leaving food patches in a small-mammal prey. Can. J. Zool. 87, 1016–1023 (2009).

    Google Scholar 

  • Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Adv. Study Behav. 16, 229–249 (1986).

    Google Scholar 

  • Tucker, V. A., Tucker, A. E., Akers, K. & Enderson, J. H. Curved flight paths and sideways vision in peregrine falcons (Falco peregrinus). J. Exp. Biol. 203, 3755–3763 (2000).

    CAS 

    Google Scholar 

  • Carr, J. M. & Lima, S. L. Wintering birds avoid warm sunshine: predation and the costs of foraging in sunlight. Oecologia 174, 713–721 (2014).

    Google Scholar 

  • van den Hout, P. J. & Martin, G. R. Extreme head-tilting in shorebirds: predator detection and sun avoidance. Wader Study Group Bull. 118, 18–21 (2011).

    Google Scholar 

  • Ferguson, J. W. H., Galpin, J. S. & de Wet, M. J. Factors affecting the activity patterns of black-backed jackals Canis mesomelas. J. Zool. 214, 55–69 (1988).

    Google Scholar 

  • Pyke, G. H. Optimal foraging theory: a critical review. Annu. Rev. Ecol. Syst. 15, 523–575 (1984).

    Google Scholar 

  • Stephens, D. W. & Krebs, J. R. Foraging Theory. (Princeton University Press, 1986).

  • Mouritsen, K. N. Predator avoidance in night-feeding dunlins calidris alpina: a matter of concealment. Ornis Scand. 23, 195–198 (1992).

    Google Scholar 

  • Blumstein, D. T. Flight-initiation distance in birds is dependent on intruder starting distance. J. Wildl. Manag. 67, 852–857 (2003).

    Google Scholar 

  • Troscianko, J. OSpRad; an open-source, low-cost, high-sensitivity spectroradiometer (p. 2022.12.09.519768). bioRxiv https://doi.org/10.1101/2022.12.09.519768 (2022).

    Article 

    Google Scholar 

  • Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.4.4. http://florianhartig.github.io/DHARMa/ (2022).

  • Core Team, R. R: a Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2022).

    Google Scholar 


  • Source: Ecology - nature.com

    Chess players face a tough foe: air pollution

    To decarbonize the chemical industry, electrify it