in

Benthic composition changes on coral reefs at global scales

  • Dudgeon, D. Multiple threats imperil freshwater biodiversity in the Anthropocene. Curr. Biol. 29, R942–R995 (2019).

    Article 

    Google Scholar 

  • Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).

    Article 
    CAS 

    Google Scholar 

  • Arrigo, K. R. et al. Synergistic interactions among growing stressors increase risk to an Arctic ecosystem. Nat. Commun. 11, 6255 (2020).

    Article 
    CAS 

    Google Scholar 

  • Kopf, R. K., Finlayson, C. M., Humphries, P., Sims, N. C. & Hladyz, S. Anthropocene baselines: assessing change and managing biodiversity in human-dominated aquatic ecosystems. Bioscience 65, 798–811 (2015).

    Article 

    Google Scholar 

  • Chapin, F. S. et al. Ecosystem stewardship: sustainability strategies for a rapidly changing planet. Trends Ecol. Evol. 25, 241–249 (2010).

    Article 

    Google Scholar 

  • Seastedt, T. R., Hobbs, R. J. & Suding, K. N. Management of novel ecosystems: are novel approaches required? Front. Ecol. Environ. 6, 547–553 (2008).

    Article 

    Google Scholar 

  • Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    Article 
    CAS 

    Google Scholar 

  • Bellwood, D. R. et al. Coral reef conservation in the Anthropocene: confronting spatial mismatches and prioritizing functions. Biol. Conserv. 236, 604–615 (2019).

    Article 

    Google Scholar 

  • Graham, N. A. J., Cinner, J. E., Norström, A. V. & Nyström, M. Coral reefs as novel ecosystems: embracing new futures. Curr. Opin. Environ. Sustain. 7, 9–14 (2014).

    Article 

    Google Scholar 

  • Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    Article 
    CAS 

    Google Scholar 

  • Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264 (2019).

    Article 
    CAS 

    Google Scholar 

  • Fisher, R. et al. Species richness on coral reefs and the pursuit of convergent global estimates. Curr. Biol. 25, 500–505 (2015).

    Article 
    CAS 

    Google Scholar 

  • Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).

    Article 

    Google Scholar 

  • Teh, L. S. L., Teh, L. C. L. & Sumaila, U. R. A global estimate of the number of coral reef fishers. PLoS ONE 8, e65397 (2013).

    Article 
    CAS 

    Google Scholar 

  • Ferrario, F. et al. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun. 5, 3794 (2014).

    Article 
    CAS 

    Google Scholar 

  • Skirving, W. J. et al. The relentless march of mass coral bleaching: a global perspective of changing heat stress. Coral Reefs 38, 547–557 (2019).

    Article 

    Google Scholar 

  • Donovan, M. K. et al. Local conditions magnify coral loss after marine heatwaves. Science 372, 977–980 (2021).

    Article 
    CAS 

    Google Scholar 

  • Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an isolated coral reef system following severe disturbance. Science 340, 69–71 (2013).

    Article 

    Google Scholar 

  • Diaz-Pulido, G. & McCook, L. J. The fate of bleached corals: patterns and dynamics of algal recruitment. Mar. Ecol. Prog. Ser. 232, 115–128 (2002).

    Article 

    Google Scholar 

  • Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).

    Article 
    CAS 

    Google Scholar 

  • Jouffray, J. B. et al. Parsing human and biophysical drivers of coral reef regimes. Proc. R. Soc. B Biol. Sci. 286, 20182544 (2019).

    Article 

    Google Scholar 

  • Reverter, M., Helber, S. B., Rohde, S., Goeij, J. M. & Schupp, P. J. Coral reef benthic community changes in the Anthropocene: biogeographic heterogeneity, overlooked configurations, and methodology. Glob. Chang. Biol. 28, 1956–1971 (2022).

    Article 

    Google Scholar 

  • Cheal, A. J., MacNeil, M. A., Emslie, M. J. & Sweatman, H. The threat to coral reefs from more intense cyclones under climate change. Glob. Chang. Biol. 23, 1511–1524 (2017).

    Article 

    Google Scholar 

  • Done, T. in Perspectives on Coral Reefs (ed. Barnes, D. J.) 107–147 (Brian Clouston, 1983).

  • Bruno, J. F., Côté, I. M. & Toth, L. T. Climate change, coral loss, and the curious case of the parrotfish paradigm: why don’t marine protected areas improve reef resilience? Ann. Rev. Mar. Sci. 11, 307–334 (2019).

    Article 

    Google Scholar 

  • Gardner, T. A., Cote, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).

    Article 
    CAS 

    Google Scholar 

  • Schutte, V. G. W., Selig, E. R. & Bruno, J. F. Regional spatio-temporal trends in Caribbean coral reef benthic communities. Mar. Ecol. Prog. Ser. 402, 115–122 (2010).

    Article 

    Google Scholar 

  • Hughes, T. P. Catastrophes, phase shifts and large-scale degradation of a Caribbean coral reef. Science 265, 1547–1551 (1994).

    Article 
    CAS 

    Google Scholar 

  • Souter, D. et al. Status of Coral Reefs of the World: 2020 (Global Coral Reef Monitoring Network, 2021).

  • Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS One 2, e711 (2007).

    Article 

    Google Scholar 

  • Ateweberhan, M., McClanahan, T. R., Graham, N. A. J. & Sheppard, C. R. C. Episodic heterogeneous decline and recovery of coral cover in the Indian Ocean. Coral Reefs 30, 739–752 (2011).

    Article 

    Google Scholar 

  • Bellwood, D. R., Hemingson, C. R. & Tebbett, S. B. Subconscious biases in coral reef fish studies. Bioscience 70, 621–627 (2020).

    Article 

    Google Scholar 

  • Kench, P. S. et al. Sustained coral reef growth in the critical wave dissipation zone of a Maldivian atoll. Commun. Earth Environ. 3, 9 (2022).

    Article 

    Google Scholar 

  • Eddy, T. D. et al. Global decline in capacity of coral reefs to provide ecosystem services. One Earth 4, 1278–1285 (2021).

    Article 

    Google Scholar 

  • Mumby, P. J., Hastings, A. & Edwards, H. J. Thresholds and the resilience of Caribbean coral reefs. Nature 450, 98–101 (2007).

    Article 
    CAS 

    Google Scholar 

  • Roff, G. & Mumby, P. J. Global disparity in the resilience of coral reefs. Trends Ecol. Evol. 27, 404–413 (2012).

    Article 

    Google Scholar 

  • Bruno, J. F., Sweatman, H., Precht, W. F., Selig, E. R. & Schutte, V. G. W. Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecology 90, 1478–1484 (2009).

    Article 

    Google Scholar 

  • Renema, W. et al. Hopping hotspots: global shifts in marine biodiversity. Science 321, 654–657 (2008).

    Article 
    CAS 

    Google Scholar 

  • Bellwood, D. R., Goatley, C. H. R. & Bellwood, O. The evolution of fishes and corals on reefs: form, function and interdependence. Biol. Rev. 92, 878–901 (2017).

    Article 

    Google Scholar 

  • Roff, G. Evolutionary history drives biogeographic patterns of coral reef resilience. Bioscience 71, 26–39 (2021).

    Google Scholar 

  • Siqueira, A. C., Bellwood, D. R. & Cowman, P. F. The evolution of traits and functions in herbivorous coral reef fishes through space and time. Proc. R. Soc. B Biol. Sci. 286, 20182672 (2019).

    Article 

    Google Scholar 

  • Birrell, C. L., McCook, L. J., Willis, B. L. & Diaz-Pulido, G. A. Effects of benthic algae on the replenishment of corals and the implications for the resilience of coral reefs. Oceanogr. Mar. Biol. Annu. Rev. 46, 25–63 (2008).

    Google Scholar 

  • Speare, K. E., Duran, A., Miller, M. W. & Burkepile, D. E. Sediment associated with algal turfs inhibits the settlement of two endangered coral species. Mar. Pollut. Bull. 144, 189–195 (2019).

    Article 
    CAS 

    Google Scholar 

  • Diaz-Pulido, G., Harii, S., McCook, L. J. & Hoegh-Guldberg, O. The impact of benthic algae on the settlement of a reef-building coral. Coral Reefs 29, 203–208 (2010).

    Article 

    Google Scholar 

  • Johns, K. A. et al. Macroalgal feedbacks and substrate properties maintain a coral reef regime shift. Ecosphere 9, e02349 (2018).

    Article 

    Google Scholar 

  • Houk, P. et al. Commercial coral-reef fisheries across Micronesia: a need for improving management. Coral Reefs 31, 13–26 (2012).

    Article 

    Google Scholar 

  • Edwards, C. B. et al. Global assessment of the status of coral reef herbivorous fishes: evidence for fishing effects. Proc. R. Soc. B Biol. Sci. 281, 20131835 (2014).

    Article 
    CAS 

    Google Scholar 

  • Choat, J. H. & Clements, K. D. Vertebrate herbivores in marine and terrestrial environments: a nutritional ecology perspective. Annu. Rev. Ecol. Syst. 29, 375–403 (1998).

    Article 

    Google Scholar 

  • Tebbett, S. B., Morais, R. A., Goatley, C. H. R. & Bellwood, D. R. Collapsing ecosystem functions on an inshore coral reef. J. Environ. Manag. 289, 112471 (2021).

    Article 

    Google Scholar 

  • Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Natl Acad. Sci. USA. 118, e2015265118 (2021).

    Article 
    CAS 

    Google Scholar 

  • Diaz-Pulido, G. et al. Greenhouse conditions induce mineralogical changes and dolomite accumulation in coralline algae on tropical reefs. Nat. Commun. 5, 3310 (2014).

    Article 

    Google Scholar 

  • Nash, M. C. et al. Dolomite-rich coralline algae in reefs resist dissolution in acidified conditions. Nat. Clim. Chang. 3, 268–272 (2013).

    Article 
    CAS 

    Google Scholar 

  • Lyons, M., Larsen K. & Skone, M. Allen Coral Atlas. Imagery, maps and monitoring of the world’s tropical coral reefs. Zenodo https://doi.org/10.5281/zenodo.3833242 (2020).

  • Tebbett, S. B. & Bellwood, D. R. Algal turf sediments on coral reefs: what’s known and what’s next. Mar. Pollut. Bull. 149, 110542 (2019).

    Article 
    CAS 

    Google Scholar 

  • Nugues, M. M. & Bak, R. P. M. Long-term dynamics of the brown macroalga Lobophora variegata on deep reefs in Curaçao. Coral Reefs 27, 389–393 (2008).

    Article 

    Google Scholar 

  • Tsounis, G. & Edmunds, P. J. Three decades of coral reef community dynamics in St. John, USVI: a contrast of scleractinians and octocorals. Ecosphere 8, e01646 (2017).

    Article 

    Google Scholar 

  • Toth, L. T. et al. Do no-take reserves benefit Florida’s corals? 14 years of change and stasis in the Florida Keys National Marine Sanctuary. Coral Reefs 33, 565–577 (2014).

    Article 

    Google Scholar 

  • Smith, J. E. et al. Re-evaluating the health of coral reef communities: baselines and evidence for human impacts across the central Pacific. Proc. R. Soc. B Biol. Sci. 283, 20151985 (2016).

    Article 

    Google Scholar 

  • Wolfe, K., Kenyon, T. M. & Mumby, P. J. The biology and ecology of coral rubble and implications for the future of coral reefs. Coral Reefs 40, 1769–1806 (2021).

    Article 

    Google Scholar 

  • Harris, J. L., Lewis, L. S. & Smith, J. E. Quantifying scales of spatial variability in algal turf assemblages on coral reefs. Mar. Ecol. Prog. Ser. 532, 41–57 (2015).

    Article 

    Google Scholar 

  • Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & Group, T. P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).

    Article 

    Google Scholar 

  • Crisp, S. K., Tebbett, S. B. & Bellwood, D. R. A critical evaluation of benthic phase shift studies on coral reefs. Mar. Environ. Res. 178, 105667 (2022).

    Article 
    CAS 

    Google Scholar 

  • WebPlotDigitizer v. 4.3 (A. Rohatgi, 2020); https://automeris.io/WebPlotDigitizer

  • Kulbicki, M. et al. Global biogeography of reef fishes: a hierarchical quantitative delineation of regions. PLoS ONE 8, e81847 (2013).

    Article 

    Google Scholar 

  • Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).

    Article 

    Google Scholar 

  • R Core Team: R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).

  • Zychaluk, K., Bruno, J. F., Clancy, D., McClanahan, T. R. & Spencer, M. Data-driven models for regional coral-reef dynamics. Ecol. Lett. 15, 151–158 (2012).

    Article 

    Google Scholar 

  • Dudgeon, S. R., Aronson, R. B., Bruno, J. F. & Precht, W. F. Phase shifts and stable states on coral reefs. Mar. Ecol. Prog. Ser. 413, 201–216 (2010).

    Article 

    Google Scholar 

  • Jost, L., Chao, A. & Chazdon, R. L. in Biological Diversity: Frontiers in Measurement and Assessment (eds Magurran, A. E. & McGill, B. J.) 66–84 (Oxford Univ. Press, 2011).

  • Oksanen, J. F. et al. Vegan: Community ecology package. R package version 2.5-6 (2019).

  • Calenge, C. The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).

    Article 

    Google Scholar 

  • Worton, B. J. Kernel methods for estimating the utilization distribution in home‐range studies. Ecology 70, 164–168 (1989).

    Article 

    Google Scholar 

  • Blonder, B. Hypervolume concepts in niche- and trait-based ecology. Ecography 41, 1441–1455 (2018).

    Article 

    Google Scholar 

  • Wood, S. N. Generalized Additive Models: an Introduction with R 2nd edn (Chapman & Hall/CRC, 2017).

  • Gräler, B., Pebesma, E. & Heuvelink, G. Spatio-temporal interpolation using gstat. R. J. 8, 204–218 (2016).

    Article 

    Google Scholar 

  • Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3.3.0 (2020).

  • Lenth, R. emmeans: Estimated marginal means, aka least-squares means. R package version 1.5.1 (2020).

  • Wickham, H. et al. tidyverse: easily install and load the ‘tidyverse’. J. Open Source Softw. 4, 1686 (2019).

    Article 

    Google Scholar 

  • Pebesma, E. Simple features for R: standardized support for spatial vector data. R. J. 10, 439–446 (2018).

    Article 

    Google Scholar 

  • South, A. rnaturalearth: World map data from natural earth. R package version 0.1.0 (2017).

  • Hamilton, N. E. & Ferry, M. ggtern: ternary diagrams using ggplot2. J. Stat. Softw., Code Snippets 87, 1–17 (2018).

    Google Scholar 

  • Pedersen, T. L. patchwork: The composer of plots. R package version 1.1.1 (2020).


  • Source: Ecology - nature.com

    Changes in interactions over ecological time scales influence single-cell growth dynamics in a metabolically coupled marine microbial community

    Rhizobial migration toward roots mediated by FadL-ExoFQP modulation of extracellular long-chain AHLs