in

Brown bear skin-borne secretions display evidence of individuality and age-sex variation

[adace-ad id="91168"]
  • Zala, S. M., Potts, W. K. & Penn, D. J. Scent-marking displays provide honest signals of health and infection. Behav. Ecol. 15, 338–344 (2004).

    Article 

    Google Scholar 

  • Allen, M. L., Wallace, C. F. & Wilmers, C. C. Patterns in bobcat (Lynx rufus) scent marking and communication behaviors. J. Ethol. 33, 9–14 (2014).

    Article 

    Google Scholar 

  • White, A. M., Swaisgood, R. R. & Zhang, H. The highs and lows of chemical communication in giant pandas (Ailuropoda melanoleuca): Effect of scent deposition height on signal discrimination. Behav. Ecol. Sociobiol. 51, 519–529 (2002).

    Article 

    Google Scholar 

  • Scordato, E. S., Dubay, G. & Drea, C. M. Chemical composition of scent marks in the ringtailed lemur (Lemur catta): Glandular differences, seasonal variation, and individual signatures. Chem. Senses 32, 493–504 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maynard Smith, J. & Harper, D. Animal Signals (Oxford University Press, 2003).

    Google Scholar 

  • Stockley, P., Bottell, L. & Hurst, J. L. Wake up and smell the conflict: Odour signals in female competition. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 368, 20130082 https://doi.org/10.1098/rstb.2013.0082 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Petrulis, A. Chemosignals, hormones and mammalian reproduction. Horm. Behav. 63, 723–741 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coombes, H. A., Stockley, P. & Hurst, J. L. Female chemical signalling underlying reproduction in mammals. J. Chem. Ecol. 44, 851–873 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harmsen, B. J., Foster, R. J., Gutierrez, S. M., Marin, S. Y. & Patrick, C. Scrape-marking behavior of jaguars (Panthera onca) and pumas (Puma concolor). J. Mammal. 91, 1225–1234 (2010).

    Article 

    Google Scholar 

  • Lamb, C. T. et al. Density-dependent signaling: An alternative hypothesis on the function of chemical signaling in a non-territorial solitary carnivore. PLoS ONE 12, e0184176 https://doi.org/10.1371/journal.pone.0184176 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Woodmansee, K. B., Zabel, C. J., Glickman, S. E., Frank, L. G. & Keppel, G. Scent marking (pasting) in a colony of immature spotted hyenas (Crocuta crocuta): A developmental study. J. Comp. Psychol. 105, 10–14 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rasmussen, L. E. L., Riddle, H. S. & Krishnamurthy, V. Mellifluous matures to malodorous in musth. Nature 415, 975–976 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Surov, A. V. & Maltsev, A. N. Analysis of chemical communication in mammals: Zoological and ecological aspects. Biol. Bull. 43, 1175–1183 (2016).

    Article 

    Google Scholar 

  • Hurst, J. L. Female recognition and assessment of males through scent. Behav. Brain Res. 200, 295–303 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mills, M. G. L. & Gorman, M. L. The scent-marking behaviour of the spotted hyaena Crocuta crocuta in the southern Kalahari. J. Zool. 212, 483–497 (1987).

    Article 

    Google Scholar 

  • Gassett, J. W. et al. Volatile compounds from interdigital gland of male white-tailed deer (Odocoileus virginianus). J. Chem. Ecol. 22, 1689–1696 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stoeckelhuber, M., Sliwa, A. & Welsch, U. Histo-physiology of the scent-marking glands of the penile pad, anal Pouch, and the forefoot in the aardwolf (Proteles cristatus). Anat. Rec. 259, 312–326 (2000).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/1097-0185(20000701)259:33.0.CO;2-X” data-track-action=”article reference” href=”https://doi.org/10.1002%2F1097-0185%2820000701%29259%3A3%3C312%3A%3AAID-AR80%3E3.0.CO%3B2-X” aria-label=”Article reference 17″ data-doi=”10.1002/1097-0185(20000701)259:33.0.CO;2-X”>Article 
    CAS 

    Google Scholar 

  • Begg, C. M., Begg, K. S., Du Toit, J. T. & Mills, M. G. L. Scent-marking behaviour of the honey badger, Mellivora capensis (Mustelidae), in the southern Kalahari. Anim. Behav. 66, 917–929 (2003).

    Article 

    Google Scholar 

  • Yasui, T., Tsukise, A. & Meyer, W. Histochemical analysis of glycoconjugates in the eccrine glands of the raccoon digital pads. Eur. J. Histochem. 48, 393–402 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Johnston, R. E. Scent marking by male golden hamsters (Mesocricetus aurutus) I. Effects of odors and social encounters. Z. Tierpsychol. 37, 75–98 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Caspers, B., Wibbelt, G. & Voigt, C. C. Histological examinations of facial glands in Saccopteryx bilineata (Chiroptera, Emballonuridae), and their potential use in territorial marking. Zoomorphology 128, 37–43 (2008).

    Article 

    Google Scholar 

  • Lawson, R. E., Putnam, R. J. & Fielding, A. H. Individual signatures in scent gland secretions of Eurasian deer. J. Zool. 251, 399–410 (2000).

    Article 

    Google Scholar 

  • Smith, T. E., Tomlinson, A. J., Mlotkiewicz, J. A. & Abbott, D. H. Female marmoset monkeys (Callithrix jacchus) can be identified from the chemical composition of their scent marks. Chem. Senses 26, 449–458 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • del Barco-Trillo, J., LaVenture, A. B. & Johnston, R. E. Male hamsters discriminate estrous state from vaginal secretions and individuals from flank marks. Behav. Process. 82, 18–24 (2009).

    Article 

    Google Scholar 

  • Sun, L. & Müller-Schwarze, D. Anal gland secretion codes for family membership in the beaver. Behav. Ecol. Sociobiol. 44, 199–208 (1998).

    Article 

    Google Scholar 

  • Zhang, J. X. et al. Possible coding for recognition of sexes, individuals and species in anal gland volatiles of Mustela eversmanni and M. sibirica. Chem. Senses 28, 381–388 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Kean, E. F., Müller, C. T. & Chadwick, E. A. Otter scent signals age, sex, and reproductive status. Chem. Senses 36, 555–564 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rosell, F. et al. Brown bears possess anal sacs and secretions may code for sex. J. Zool. 283, 143–152 (2011).

    Article 

    Google Scholar 

  • Buesching, C. D., Waterhouse, J. S. & Macdonald, D. W. Gas-chromatographic analyses of the subcaudal gland secretion of the European badger (Meles meles) part I: Chemical differences related to individual parameters. J. Chem. Ecol. 28, 41–56 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yuan, H. et al. Anogenital gland secretions code for sex and age in the giant panda, Ailuropoda melanoleuca. Can. J. Zool. 82, 1596–1604 (2004).

    Article 

    Google Scholar 

  • Kent, L. & Tang-Martínez, Z. Evidence of individual odors and individual discrimination in the raccoon, Procyon lotor. J. Mammal. 95, 1254–1262 (2014).

    Article 

    Google Scholar 

  • Woodley, S. K. & Baum, M. J. Differential activation of glomeruli in the ferret’s main olfactory bulb by anal scent gland odours from males and females: An early step in mate identification. Eur. J. Neurosci. 20, 1025–1032 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Allen, M. L. et al. The role of scent marking in mate selection by female pumas (Puma concolor). PLoS ONE 10, e0139087 https://doi.org/10.1371/journal.pone.0139087 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Latour, P. Interactions between free-ranging, adult male polar bears (Ursus maritimus Phipps): A case of adult social play. Can. J. Zool. 59, 1775–1783 (1981).

    Article 

    Google Scholar 

  • Nie, Y., Swaisgood, R. R., Zhang, Z., Liu, X. & Wei, F. Reproductive competition and fecal testosterone in wild male giant pandas (Ailuropoda melanoleuca). Behav. Ecol. Sociobiol. 66, 721–730 (2012).

    Article 

    Google Scholar 

  • Clapham, M. & Kitchin, J. Social play in wild brown bears of varying age-sex class. Acta Ethol. 19, 181–188 (2016).

    Article 

    Google Scholar 

  • Stonorov, D. & Stokes, A. W. Social behavior of the Alaska brown bear. Int. Conf. Bear Res. Manag. 2, 232–242 (1972).

    Google Scholar 

  • Clapham, M., Nevin, O. T., Ramsey, A. D. & Rosell, F. A hypothetico-deductive approach to assessing the social function of chemical signalling in a non-territorial solitary carnivore. PLoS ONE 7, e35404 https://doi.org/10.1371/journal.pone.0035404 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clapham, M., Nevin, O. T., Ramsey, A. D. & Rosell, F. The function of strategic tree selectivity in the chemical signalling of brown bears. Anim. Behav. 85, 1351–1357 (2013).

    Article 

    Google Scholar 

  • Owen, M. A. et al. An experimental investigation of chemical communication in the polar bear. J. Zool. 295, 36–43 (2015).

    Article 

    Google Scholar 

  • Sergiel, A. et al. Histological, chemical and behavioural evidence of pedal communication in brown bears. Sci. Rep. 7, 1052 https://doi.org/10.1038/s41598-017-01136-1 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tomiyasu, J. et al. Morphological and histological features of the vomeronasal organ in the brown bear. J. Anat. 231, 749–757 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tomiyasu, J. et al. Testicular regulation of seasonal change in apocrine glands in the back skin of the brown bear (Ursus arctos). J. Vet. Med. Sci. 80, 1034–1040 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tomiyasu, J. et al. Testosterone-related and seasonal changes in sebaceous glands in the back skin of adult male brown bears (Ursus arctos). Can. J. Zool. 96, 205–211 (2018).

    Article 
    CAS 

    Google Scholar 

  • Burst, T. L. & Pelton, M. R. Black bear mark trees in the Smoky mountains. Int. Conf. Bear Res. Manag. 5, 45–53 (1983).

    Google Scholar 

  • Mattson, D. J. & Greene, G. I. Tree rubbing by Yellowstone grizzly bears Ursus arctos. Wildl. Biol. 1, 1–9 (2003).

    Google Scholar 

  • Nie, Y. et al. Giant panda scent-marking strategies in the wild: Role of season, sex and marking surface. Anim. Behav. 84, 39–44 (2012).

    Article 

    Google Scholar 

  • Revilla, E. et al. Brown bear communication hubs: Patterns and correlates of tree rubbing and pedal marking at a long-term marking site. PeerJ 9, 10447 https://doi.org/10.7717/peerj.10447 (2021).

    Article 

    Google Scholar 

  • Clapham, M., Nevin, O. T., Ramsey, A. D. & Rosell, F. Scent-marking investment and motor patterns are affected by the age and sex of wild brown bears. Anim. Behav. 94, 107–116 (2014).

    Article 

    Google Scholar 

  • Taylor, A. P., Gunther, M. S. & Allen, M. L. Black bear marking behaviour at rub trees during the breeding season in northern California. Behaviour 152, 1097–1111 (2015).

    Article 

    Google Scholar 

  • Filipczyková, E., Heitkönig, I., Castellanos, A., Hantson, W. & Steyaert, S. Marking behavior of Andean bears in an Ecuadorian cloud forest: A pilot study. Ursus 27, 122–128 (2017).

    Article 

    Google Scholar 

  • Stringham, S. F. Aggressive body language of bears and wildlife viewing: A response to Geist (2011). Hum.-Wildl. Interact. 5, 4 (2011).

    Google Scholar 

  • Swaisgood, R. R., Lindburg, D. G. & Zhang, H. Discrimination of oestrous status in giant pandas (Ailuropoda melanoleuca) via chemical cues in urine. J. Zool. 257, 381–386 (2002).

    Article 

    Google Scholar 

  • Wilson, A. E. et al. Behavioral, semiochemical and androgen responses by male giant pandas to the olfactory sexual receptivity cues of females. Theriogenology 114, 330–337 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sillero-Zubiri, C. & Macdonald, D. W. Scent-marking and territorial behaviour of Ethiopian wolves Canis simensis. J. Zool. 245, 351–361 (1998).

    Article 

    Google Scholar 

  • Stępniak, K. M., Niedźwiecka, N., Szewczyk, M. & Mysłajek, R. W. Scent marking in wolves Canis lupus inhabiting managed lowland forests in Poland. Mammal Res. 65, 629–638 (2020).

    Article 

    Google Scholar 

  • Liu, D. et al. Do anogenital gland secretions of giant panda code for their sexual ability? Chin. Sci. Bull. 51, 1986–1995 (2006).

    Article 
    CAS 

    Google Scholar 

  • Tattoni, C., Bragalanti, N., Groff, C. & Rovero, F. Patterns in the use of rub trees by the Eurasian brown bear. Hystrix 26, 118 (2015).

    Google Scholar 

  • Zhang, J. X. et al. Potential chemosignals in the anogenital gland secretion of giant pandas, Ailuropoda melanoleuca, associated with sex and individual identity. J. Chem. Ecol. 34, 398–407 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Swaisgood, R. R., Lindburg, D. G., Zhou, X. & Owen, M. A. The effects of sex, reproductive condition and context on discrimination of conspecific odours by giant pandas. Anim. Behav. 60, 227–237 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Swaisgood, R., Lindburg, D. & Zhou, X. Giant pandas discriminate individual differences in conspecific scent. Anim. Behav. 57, 1045–1053 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, D. et al. Do urinary chemosignals code for sex, age, and season in the giant panda, Ailuropoda melanoleuca? in Chemical Signals in Vertebrates. Vol. 12. 207–222 (eds. East, M. L. & Dehnhard, M.). https://doi.org/10.1007/978-1-4614-5927-9_16 (Springer, 2013).

  • Hagey, L. & MacDonald, E. Chemical cues identify gender and individuality in giant pandas (Ailuropoda melanoleuca). J. Chem. Ecol. 29, 1479–1488 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wilson, A. E., Sparks, D. L., Knott, K. K., Willard, S. & Brown, A. Implementing solid phase microextraction (SPME) as a tool to detect volatile compounds produced by giant pandas in the environment. PLoS ONE 13, e0208618 https://doi.org/10.1371/journal.pone.0208618 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilson, A. E. et al. Field air analysis of volatile compounds from free-ranging giant pandas. Ursus 29, 75–81 (2019).

    Article 

    Google Scholar 

  • Crupi, A. P., Waite, J. N., Flynn, R. W. & Beier, L. Brown bear population estimation in Yakutat, Southeast Alaska. Alaska Department of Fish and Game https://doi.org/10.13140/RG.2.2.35947.54568 (2017).

    Article 

    Google Scholar 

  • Sikes, R. S., Gannon, W. L. & The Animal Care and Use Committee of the American Society of Mammalogists. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 92, 235–253 (2011).

  • Matson, G. et al. A Laboratory Manual for Cementum Age Determination of Alaska Brown Bear First Premolar Teeth. Alaska Department of Fish and Game, Division of Wildlife Conservation https://www.adfg.alaska.gov/index.cfm?adfg=librarypublications.wildlifepublicationsdetails&pubidentifier=3374 (1993).

  • Seryodkin, I. V. Marking activity of the Kamchatka brown bear (Ursus arctos piscator). Achiev. Life Sci. 8, 153–161 (2014).

    Google Scholar 

  • Peralbo-Molina, A., Calderón-Santiago, M., Jurado-Gámez, B., Luque De Castro, M. D. & Priego-Capote, F. Exhaled breath condensate to discriminate individuals with different smoking habits by GC-TOF/MS. Sci. Rep. 7, 1421 https://doi.org/10.1038/s41598-017-01564-z (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, D. et al. Male panda (Ailuropoda melanoleuca) urine contains kinship information. Chin. Sci. Bull. 53, 2793–2800 (2008).

    CAS 

    Google Scholar 

  • Kean, E. F., Chadwick, E. A. & Müller, C. T. Scent signals individual identity and country of origin in otters. Mamm. Biol. Z. Säugetierkd. 80, 99–105 (2015).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2020).

  • Harris, R. L., Holland, B. R., Cameron, E. Z., Davies, N. W. & Nicol, S. C. Chemical signals in the echidna: Differences between seasons, sexes, individuals and gland types. J. Zool. 293, 171–180 (2014).

    Article 

    Google Scholar 

  • Vaglio, S. et al. Sternal gland scent-marking signals sex, age, rank, and group identity in captive mandrills. Chem. Senses 41, 177–186 (2016).

    PubMed 

    Google Scholar 

  • Knott, K. K. et al. Blood-based biomarkers of selenium and thyroid status indicate possible adverse biological effects of mercury and polychlorinated biphenyls in Southern Beaufort Sea polar bears. Environ. Res. 111, 1124–1136 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilson, A. E. et al. Development and validation of protein biomarkers of health in grizzly bears. Conserv. Physiol. 8, coaa056 https://doi.org/10.1093/conphys/coaa056 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oksanen, J. et al. Vegan: community ecology package. R package version 2.6-4. https://CRAN.R-project.org/package=vegan (2020).

  • Williams, C. L., Ybarra, A. R., Meredith, A. N., Durrant, B. S. & Tubbs, C. W. Gut microbiota and phytoestrogen-associated infertility in Southern White Rhinoceros. MBio 10, e00311-19 https://doi.org/10.1128/mBio.00311-19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dill-McFarland, K. A., Breaker, J. D. & Suen, G. Microbial succession in the gastrointestinal tract of dairy cows from 2 weeks to first lactation. Sci. Rep. 7, 40864 https://doi.org/10.1038/srep40864 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Williams, C. L. et al. Dietary changes during weaning shape the gut microbiota of red pandas (Ailurus fulgens). Conserv. Physiol. 6, cox075 https://doi.org/10.1093/conphys/cox075 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bolar, K. STAT: interactive document for working with basic statistical analysis. R package version 0.1.0. https://CRAN.R-project.org/package=STAT (2019).

  • Gese, E. & Ruff, R. Scent-marking by coyotes, Canis latrans: The influence of social and ecological factors. Anim. Behav. 54, 1155–1166 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thompson, C. L. et al. What smells? Developing in-field methods to characterize the chemical composition of wild mammalian scent cues. Ecol. Evol. 10, 4691–4701 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Charpentier, M. J. E., Barthes, N., Proffit, M., Bessière, J.-M. & Grison, C. Critical thinking in the chemical ecology of mammalian communication: Roadmap for future studies. Funct. Ecol. 26, 769–774 (2012).

    Article 

    Google Scholar 

  • Martín, J., Carranza, J., López, P., Alarcos, S. & Pérez-González, J. A new sexual signal in rutting male red deer: Age related chemical scent constituents in the belly black spot. Mamm. Biol. 79, 362–368 (2014).

    Article 

    Google Scholar 

  • Carranza, J. et al. The dark ventral patch: A bimodal flexible trait related to male competition in red deer. PLoS ONE 15, 0241374 https://doi.org/10.1371/journal.pone.0241374 (2020).

    Article 
    CAS 

    Google Scholar 

  • Kean, E. F., Bruford, M. W., Russo, I. R. M., Müller, C. T. & Chadwick, E. A. Odour dialects among wild mammals. Sci. Rep. 7, 13593 https://doi.org/10.1038/s41598-017-12706-8 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marneweck, C., Jürgens, A. & Shrader, A. M. The role of middens in white rhino olfactory communication. Anim. Behav. 140, 7–18 (2018).

    Article 

    Google Scholar 

  • Linklater, W. L., Mayer, K. & Swaisgood, R. R. Chemical signals of age, sex and identity in black rhinoceros. Anim. Behav. 85, 671–677 (2013).

    Article 

    Google Scholar 

  • White, A. M., Swaisgood, R. R. & Zhang, H. Chemical communication in the giant panda (Ailuropoda melanoleuca): The role of age in the signaller and assessor. J. Zool. 259, 171–178 (2003).

    Article 

    Google Scholar 

  • Steiger, S., Schmitt, T. & Schaefer, H. M. The origin and dynamic evolution of chemical information transfer. Proc. R. Soc. B Biol. Sci. 278, 970–979 https://doi.org/10.1098/rspb.2010.2285 (2011).

    Article 

    Google Scholar 

  • Williams, C. L. et al. Wildlife-microbiome interactions and disease: Exploring opportunities for disease mitigation across ecological scales. Drug Discov. Today Dis. Models 28, 105–115 (2018).

    Article 

    Google Scholar 

  • Chiang, Y. R., Wei, S. T. S., Wang, P. H., Wu, P. H. & Yu, C. P. Microbial degradation of steroid sex hormones: Implications for environmental and ecological studies. Microb. Biotechnol. 13, 926–949 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Williams, C. L., Garcia-Reyero, N., Martyniuk, C. J., Tubbs, C. W. & Bisesi, J. H. Regulation of endocrine systems by the microbiome: Perspectives from comparative animal models. Gen. Comp. Endocrinol. 292, 113437 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Theis, K. R., Venkataraman, A., Wagner, A. P., Holekamp, K. E. & Schmidt, T. M. Age-related variation in the scent pouch bacterial communities of striped hyenas (Hyaena hyaena). Chem. Signals Vertebr. 13, 87–103 (2016).

    Article 

    Google Scholar 

  • Steyaert, S. M. J. G., Endrestøl, A., Hackländer, K., Swenson, J. E. & Zedrosser, A. The mating system of the brown bear Ursus arctos. Mammal Rev. 42, 12–34 (2012).

    Article 

    Google Scholar 

  • Bellemain, E. et al. The dilemma of female mate selection in the brown bear, a species with sexually selected infanticide. Proc. R. Soc. B Biol. Sci. 273, 283–291 https://doi.org/10.1098/rspb.2005.3331 (2006).

    Article 

    Google Scholar 

  • Zedrosser, A., Bellemain, E., Taberlet, P. & Swenson, J. E. Genetic estimates of annual reproductive success in male brown bears: The effects of body size, age, internal relatedness and population density. J. Anim. Ecol. 76, 368–375 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Schwartz, C. C. et al. Reproductive maturation and senescence in the female brown bear. Ursus 14, 109–119 (2003).

    Google Scholar 

  • Schulte, B. A., Freeman, E. W., Goodwin, T. E., Hollister-Smith, J. & Rasmussen, L. E. L. Honest signalling through chemicals by elephants with applications for care and conservation. Appl. Anim. Behav. Sci. 102, 344–363 (2007).

    Article 

    Google Scholar 

  • Støen, O.-G., Bellemain, E., Sæbø, S. & Swenson, J. E. Kin-related spatial structure in brown bears Ursus arctos. Behav. Ecol. Sociobiol. 59, 191–197 (2005).

    Article 

    Google Scholar 

  • Egbert, A. L. & Stokes, A. W. The social behaviour of brown bears on an Alaskan salmon stream. Int. Conf. Bear Res. Manag. 3, 41–56 (1976).

    Google Scholar 

  • Craighead, J. J., Sumner, J. S. & Mitchell, J. A. The Grizzly Bears of Yellowstone: Their Ecology in the Yellowstone Ecosystem, 1959–1992 (Island Press, 1995).

    Google Scholar 

  • Burgener, N., Dehnhard, M., Hofer, H. & East, M. L. Does anal gland scent signal identity in the spotted hyaena? Anim.
    Behav.
    77, 707–715 (2009).

    Article 

    Google Scholar 

  • Noonan, M. J. et al. Knowing me, knowing you: Anal gland secretion of European badgers (Meles meles) codes for individuality, sex and social group membership. J. Chem. Ecol. 45, 823–837 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, L. & Müller-Schwarze, D. Sibling recognition in the beaver: A field test for phenotype matching. Anim. Behav. 54, 493–502 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thom, M. D. & Hurst, J. L. Individual recognition by scent. Ann. Zool. Fenn. 41, 765–787 (2004).

    Google Scholar 

  • Roberts, S. A. et al. Individual odour signatures that mice learn are shaped by involatile major urinary proteins (MUPs). BMC Biol. 16, 1–19 https://doi.org/10.1186/s12915-018-0512-9 (2018).

    Article 
    CAS 

    Google Scholar 

  • Henkel, S. & Setchell, J. M. Group and kin recognition via olfactory cues in chimpanzees (Pan troglodytes). Proc. R. Soc. B Biol. Sci. 285, 20181527 https://doi.org/10.1098/rspb.2018.1527 (2018).

    Article 

    Google Scholar 

  • Vogt, K., Boos, S., Breitenmoser, U. & Kölliker, M. Chemical composition of Eurasian lynx urine conveys information on reproductive state, individual identity, and urine age. Chemoecology 26, 205–217 (2016).

    Article 
    CAS 

    Google Scholar 

  • Wyatt, T. D. Pheromones and signature mixtures: Defining species-wide signals and variable cues for identity in both invertebrates and vertebrates. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 196, 685–700 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Johnston, R. E. Chemical communication in rodents: From pheromones to individual recognition. J. Mammal. 84, 1141–1162 (2003).

    Article 

    Google Scholar 

  • Dehnhard, M. Mammal semiochemicals: Understanding pheromones and signature mixtures for better zoo-animal husbandry and conservation. Int. Zoo Yearb. 45, 55–79 (2011).

    Article 

    Google Scholar 

  • Brennan, P. A. & Kendrick, K. M. Mammalian social odours: Attraction and individual recognition. Philos. Trans. R. Soc. B Biol. Sci. 361, 2061–2078 https://doi.org/10.1098/rstb.2006.1931 (2006).

    Article 
    CAS 

    Google Scholar 

  • Bellemain, E., Swenson, J. E. & Taberlet, P. Mating strategies in relation to sexually selected infanticide in a non-social carnivore: The brown bear. Ethology 112, 238–246 (2006).

    Article 

    Google Scholar 

  • Rogers, L. L. Effects of food supply and kinship on social behavior, movements, and population growth of black bears in northeastern Minnesota. Wildl. Monogr. 97, 72 (1987).

    Google Scholar 

  • Noyce, K. V. & Garshelis, D. L. Follow the leader: Social cues help guide landscape-level movements of American black bears (Ursus americanus). Can. J. Zool. 92, 1005–1017 (2014).

    Article 

    Google Scholar 

  • Hansen, J. E., Hertel, A. G., Frank, S. C., Kindberg, J. & Zedrosser, A. Social environment shapes female settlement decisions in a solitary carnivore. Behav. Ecol. 33, 137–146 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morehouse, A. T., Loosen, A. E., Graves, T. A. & Boyce, M. S. The smell of success: Reproductive success related to rub behavior in brown bears. PLoS ONE 16, 247964 https://doi.org/10.1371/journal.pone.0247964 (2021).

    Article 
    CAS 

    Google Scholar 

  • Tschanz, B., Meyer-Holzapfel, M. & Bachmann, S. Das informationssystem bei Braunbären. Z. Tierpsychol. 27, 47–72 (1970).

    Article 

    Google Scholar 

  • Tattoni, C., Bragalanti, N., Ciolli, M., Groff, C. & Rovero, F. Behavior of the European brown bear at rub trees. Ursus 32e9, 1–11https://doi.org/10.2192/URSUS-D-20-00022.3 (2021).

    Article 

    Google Scholar 

  • Alberts, A. C. Constraints on the design of chemical communication systems in terrestrial vertebrates. Am. Nat. 139, S62–S89 (1992).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Rethinking river water temperature in a changing, human-dominated world

    Improving health outcomes by targeting climate and air pollution simultaneously