Aylward, F. O. et al. Microbial community transcriptional networks are conserved in three domains at ocean basin scales. Proc. Natl Acad. Sci. USA 112, 5443–5448 (2015).
Google Scholar
Fuhrman, J. A. Microbial community structure and its functional implications. Nature 459, 193–199 (2009).
Google Scholar
Amin, S. A., Parker, M. S. & Armbrust, E. V. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev. 76, 667–684 (2012).
Google Scholar
Mayali, X. Metabolic interactions between bacteria and phytoplankton. Front. Microbiol. 9, 727 (2018).
Google Scholar
Amin, S. A. et al. Photolysis of iron–siderophore chelates promotes bacterial–algal mutualism. Proc. Natl Acad. Sci. USA 106, 17071–17076 (2009).
Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98 (2015).
Google Scholar
Durham, B. P. et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc. Natl Acad. Sci. USA 112, 453 (2015).
Google Scholar
Stocker, R. Marine microbes see a sea of gradients. Science 338, 628 (2012).
Google Scholar
Bell, W. & Mitchell, R. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull. 143, 265–277 (1972).
Google Scholar
Azam, F. & Ammerman, J. W. in Flows of Energy and Materials in Marine Ecosystems 345–360 (Springer, 1984).
Mitchell, J. G., Okubo, A. & Fuhrman, J. A. Microzones surrounding phytoplankton form the basis for a stratified marine microbial ecosystem. Nature 316, 58–59 (1985).
Google Scholar
Seymour, J. R., Amin, S. A., Raina, J.-B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017).
Google Scholar
Sonnenschein, E. C., Syit, D. A., Grossart, H.-P. & Ullrich, M. S. Chemotaxis of Marinobacter adhaerens and its impact on attachment to the diatom Thalassiosira weissflogii. Appl. Environ. Microbiol. 78, 6900–6907 (2012).
Google Scholar
Raina, J.-B., Fernandez, V., Lambert, B., Stocker, R. & Seymour, J. R. The role of microbial motility and chemotaxis in symbiosis. Nat. Rev. Microbiol. 17, 284–294 (2019).
Google Scholar
Seymour, J. R., Ahmed, T., Durham, W. M. & Stocker, R. Chemotactic response of marine bacteria to the extracellular products of Synechococcus and Prochlorococcus. Aquat. Microb. Ecol. 59, 161–168 (2010).
Google Scholar
Smriga, S., Fernandez, V. I., Mitchell, J. G. & Stocker, R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc. Natl Acad. Sci. USA 113, 1576–1581 (2016).
Google Scholar
Flombaum, P., Wang, W.-L., Primeau, F. W. & Martiny, A. C. Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nat. Geosci. 13, 116–120 (2020).
Google Scholar
Christie-Oleza, J. A., Sousoni, D., Lloyd, M., Armengaud, J. & Scanlan, D. J. Nutrient recycling facilitates long-term stability of marine microbial phototroph–heterotroph interactions. Nat. Microbiol. 2, 17100 (2017).
Google Scholar
Morris, J. J., Kirkegaard, R., Szul, M. J., Johnson, Z. I. & Zinser, E. R. Facilitation of robust growth of Prochlorococcus colonies and dilute liquid cultures by ‘helper’ heterotrophic bacteria. Appl. Environ. Microbiol. 74, 4530–4534 (2008).
Google Scholar
Sher, D., Thompson, J. W., Kashtan, N., Croal, L. & Chisholm, S. W. Response of Prochlorococcus ecotypes to co-culture with diverse marine bacteria. ISME J. 5, 1125–1132 (2011).
Google Scholar
Aharonovich, D. & Sher, D. Transcriptional response of Prochlorococcus to co-culture with a marine Alteromonas: differences between strains and the involvement of putative infochemicals. ISME J. 10, 2892–2906 (2016).
Google Scholar
Jackson, G. A. Simulating chemosensory responses of marine microorganisms. Limnol. Oceanogr. 32, 1253–1266 (1987).
Google Scholar
Gärdes, A., Iversen, M. H., Grossart, H.-P., Passow, U. & Ullrich, M. S. Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii. ISME J. 5, 436–445 (2011).
Google Scholar
Al-Wahaib, D., Al-Bader, D., Al-Shaikh Abdou, D. K., Eliyas, M. & Radwan, S. S. Consistent occurrence of hydrocarbonoclastic Marinobacter strains in various cultures of picocyanobacteria from the Arabian Gulf: promising associations for biodegradation of marine oil pollution. J. Mol. Microbiol. Biotechnol. 26, 261–268 (2016).
Google Scholar
Raina, J.-B. et al. Subcellular tracking reveals the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria. eLife 6, e23008 (2017).
Google Scholar
Brumley, D. R. et al. Cutting through the noise: bacterial chemotaxis in marine microenvironments. Front. Mar. Sci. 7, 527 (2020).
Google Scholar
Gärdes, A. et al. Complete genome sequence of Marinobacter adhaerens type strain (HP15), a diatom-interacting marine microorganism. Stand. Genom. Sci. 3, 97–107 (2010).
Google Scholar
Moore, L. R., Post, A. F., Rocap, G. & Chisholm, S. W. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol. Oceanogr. 47, 989–996 (2002).
Google Scholar
Wawrik, B., Callaghan, A. V. & Bronk, D. A. Use of inorganic and organic nitrogen by Synechococcus spp. and diatoms on the West Florida shelf as measured using stable isotope probing. Appl. Environ. Microbiol. 75, 6662–6670 (2009).
Google Scholar
Lambert, B. S. et al. A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. Nat. Microbiol. 2, 1344–1349 (2017).
Google Scholar
Raina, J.-B. et al. Chemotaxis shapes the microscale organization of the ocean’s microbiome. Nature 605, 132–138 (2022).
Google Scholar
Brumley, D. R. et al. Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. Proc. Natl Acad. Sci. USA 116, 10792–10797 (2019).
Google Scholar
Myklestad, S. M. in Marine Chemistry (ed. Wangersky, P. J.) 111–148 (Springer Berlin Heidelberg, 2000).
Ni, B., Colin, R., Link, H., Endres, R. G. & Sourjik, V. Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis. Proc. Natl Acad. Sci. USA 117, 595–601 (2020).
Google Scholar
Stocker, R., Seymour, J. R., Samadani, A., Hunt, D. E. & Polz, M. F. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc. Natl Acad. Sci. USA 105, 4209–4214 (2008).
Google Scholar
Buitenhuis, E. et al. MAREDAT: towards a world atlas of MARine Ecosystem DATa. Earth Syst. Sci. Data 5, 227–239 (2013).
Google Scholar
Raina, J.-B. et al. Symbiosis in the microbial world: from ecology to genome evolution. Biol. Open 7, bio032524 (2018).
Google Scholar
Giardina, M. et al. Quantifying inorganic nitrogen assimilation by Synechococcus using bulk and single-cell mass spectrometry: a comparative study. Front. Microbiol. 9, 2847 (2018).
Google Scholar
Berges, J. A., Franklin, D. J. & Harrison, P. J. Evolution of an artificial seawater medium: improvements in enriched seawater, artificial water over the last two decades. J. Phycol. 37, 1138–1145 (2001).
Google Scholar
Guillard, R. R. L. in Culture of Marine Invertebrate Animals: Proceedings—1st Conference on Culture of Marine Invertebrate Animals Greenport (eds Walter, L. S. & Matoira, H. C.) 29–60 (Springer US, 1975).
Kaeppel, E. C., Gärdes, A., Seebah, S., Grossart, H.-P. & Ullrich, M. S. Marinobacter adhaerens sp. nov., isolated from marine aggregates formed with the diatom Thalassiosira weissflogii. Int. J. Syst. Evolut. Microbiol. 62, 124–128 (2012).
Google Scholar
Sonnenschein, E. C. et al. Development of a genetic system for Marinobacter adhaerens HP15 involved in marine aggregate formation by interacting with diatom cells. J. Microbiol. Methods 87, 176–183 (2011).
Google Scholar
Marie, D., Partensky, F., Jacquet, S. & Vaulot, D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl. Environ. Microbiol. 63, 186–193 (1997).
Google Scholar
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
Google Scholar
Hillion, F., Kilburn, M., Hoppe, P., Messenger, S. & Weber, P. K. The effect of QSA on S, C, O and Si isotopic ratio measurements. Geochim. Cosmochim. Acta 72, A377 (2008).
Popa, R. et al. Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J. 1, 354–360 (2007).
Google Scholar
Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007).
Google Scholar
Clerc, E. E., Raina, J.-B., Lambert, B. S., Seymour, J. & Stocker, R. In situ chemotaxis assay to examine microbial behavior in aquatic ecosystems. JoVE https://doi.org/10.3791/61062 (2020).
Ihaka, R. & Gentleman, R. R: a language for data analysis and graphics. J. Comput. Graph. Stat. 5, 299–314 (1996).
Xie, L., Lu, C. & Wu, X.-L. Marine bacterial chemoresponse to a stepwise chemoattractant stimulus. Biophys. J. 108, 766–774 (2015).
Google Scholar
Son, K., Guasto, J. S. & Stocker, R. Bacteria can exploit a flagellar buckling instability to change direction. Nat. Phys. 9, 494–498 (2013).
Google Scholar
Lee, C. & Bada, J. L. Amino acids in equatorial Pacific Ocean water. Earth Planet. Sci. Lett. 26, 61–68 (1975).
Google Scholar
Yamashita, Y. & Tanoue, E. Distribution and alteration of amino acids in bulk DOM along a transect from bay to oceanic waters. Mar. Chem. 82, 145–160 (2003).
Google Scholar
Menden-Deuer, S. & Lessard, E. J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45, 569–579 (2000).
Google Scholar
Mullin, M. M., Sloan, P. R. & Eppley, R. W. Relationship between carbon content, cell volume and area in phytoplankton. Limnol. Oceanogr. 11, 307–311 (1966).
Google Scholar
Source: Ecology - nature.com