Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. 113(48), 13785–13790. https://doi.org/10.1073/pnas.1606102113 (2016).
Google Scholar
Wernberg, T. et al. Biology and ecology of the globally significant kelp Ecklonia radiata. Oceanogr. Mar. Biol. https://doi.org/10.1201/9780429026379-6 (2019).
Google Scholar
Bennett, S. et al. The ‘Great Southern Reef’: Social, ecological and economic value of Australia’s neglected kelp forests. Mar. Freshw. Res. 67(1), 47–56. https://doi.org/10.1071/MF15232 (2015).
Google Scholar
Eger, A. et al. The economic value of fisheries, blue carbon, and nutrient cycling in global marine forests. EcoEvoRxiv. https://doi.org/10.32942/osf.io/n7kjs (2021).
Google Scholar
Smith, K. E. et al. Socioeconomic impacts of marine heatwaves: Global issues and opportunities. Science 374, 6566. https://doi.org/10.1126/science.abj3593 (2021).
Google Scholar
Coleman, M. et al. Loss of a globally unique kelp forest and genetic diversity from the northern hemisphere. Sci. Rep. 12, 5020. https://doi.org/10.1038/s41598-022-08264-3 (2022).
Google Scholar
Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl. Acad. Sci. 113(48), 13791–13796. https://doi.org/10.1073/pnas.1610725113 (2016).
Google Scholar
Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353(6295), 169–172. https://doi.org/10.1126/science.aad8745 (2016).
Google Scholar
Wood, G. et al. Genomic vulnerability of a dominant seaweed points to future-proofing pathways for Australia’s underwater forests. Glob. Change Biol. 27(10), 2200–2212. https://doi.org/10.1111/gcb.15534 (2021).
Google Scholar
Vranken, S. et al. Genotype-environment mismatch of kelp forests under climate change. Mol. Ecol. 30(15), 3730. https://doi.org/10.1111/mec.15993 (2021).
Google Scholar
Assis, J. et al. Deep reefs are climatic refugia for genetic diversity of marine forests. J. Biogeogr. 43(4), 833–844. https://doi.org/10.1111/jbi.12677 (2016).
Google Scholar
Lourenço, C. R. et al. Upwelling areas as climate change refugia for the distribution and genetic diversity of a marine macroalga. J. Biogeogr. 43(8), 1595–1607. https://doi.org/10.1111/jbi.12744 (2016).
Google Scholar
Graham, M. H., Kinlan, B. P., Druehl, L. D., Garske, L. E. & Banks, S. Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity. Proc. Natl. Acad. Sci. 104(42), 16576–16580. https://doi.org/10.1073/pnas.0704778104 (2007).
Google Scholar
Marzinelli, E. M. et al. Large-scale geographic variation in distribution and abundance of Australian deep-water kelp forests. PLoS ONE 10, e0118390. https://doi.org/10.1371/journal.pone.0118390 (2015).
Google Scholar
Coleman, M. A. et al. Variation in the strength of continental boundary currents determines continent-wide connectivity in kelp. J. Ecol. 99(4), 1026–1032. https://doi.org/10.1111/j.1365-2745.2011.01822.x (2011).
Google Scholar
Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: The rear edge matters. Ecol. Lett. 8(5), 461–467. https://doi.org/10.1111/j.1461-0248.2005.00739.x (2005).
Google Scholar
Maggs, C. A. et al. Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 89(sp11), S108–S122. https://doi.org/10.1890/08-0257.1 (2008).
Google Scholar
Grant, W. S., Lydon, A. & Bringloe, T. T. Phylogeography of split kelp Hedophyllum nigripes: Northern ice-age refugia and trans-Arctic dispersal. Polar Biol. 43, 1829–1841. https://doi.org/10.1007/s00300-020-02748-6 (2020).
Google Scholar
Hoarau, G., Coyer, J. A., Veldsink, J. H., Stam, W. T. & Olsen, J. L. Glacial refugia and recolonization pathways in the brown seaweed Fucus serratus. Mol. Ecol. 16(17), 3606–3616. https://doi.org/10.1111/j.1365-294X.2007.03408.x (2007).
Google Scholar
Fraser, C. I., Nikula, R., Spencer, H. G. & Waters, J. M. Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum. Proc. Natl. Acad. Sci. 106(9), 3249–3253. https://doi.org/10.1073/pnas.0810635106 (2009).
Google Scholar
Assis, J. et al. Past climate changes and strong oceanographic barriers structured low-latitude genetic relics for the golden kelp Laminaria ochroleuca. J. Biogeogr. 45(10), 2326–2336. https://doi.org/10.1111/jbi.13425 (2018).
Google Scholar
Gersonde, R., Crosta, X., Abelmann, A. & Armand, L. Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG last glacial maximum—A circum-Antarctic view based on siliceous microfossil records. Quat. Sci. Rev. 24(7–9), 869–896. https://doi.org/10.1016/j.quascirev.2004.07.015 (2005).
Google Scholar
Bostock, H. C., Opdyke, B. N., Gagan, M. K., Kiss, A. E. & Fifield, L. K. Glacial/interglacial changes in the East Australian current. Clim. Dyn. 26, 645–659. https://doi.org/10.1007/s00382-005-0103-7 (2006).
Google Scholar
Brooke, B. P., Nichol, S. L., Huang, Z. & Beaman, R. J. Palaeoshorelines on the Australian continental shelf: Morphology, sea-level relationship and applications to environmental management and archaeology. Cont. Shelf Res. 134, 26–38. https://doi.org/10.1016/j.csr.2016.12.012 (2017).
Google Scholar
Williams, A. N., Ulm, S., Sapienza, T., Lewis, S. & Turney, C. S. M. Sea-level change and demography during the last glacial termination and early Holocene across the Australian continent. Quat. Sci. Rev. 182, 144–154. https://doi.org/10.1016/j.quascirev.2017.11.030 (2018).
Google Scholar
Durrant, H. M. S., Barrett, N. S., Edgar, G. J., Coleman, M. A. & Burridge, C. P. Shallow phylogeographic histories of key species in a biodiversity hotspot. Phycologia 54(6), 556–565. https://doi.org/10.2216/15-24.1 (2015).
Google Scholar
O’Hara, T. D. & Poore, G. C. B. Patterns of distribution for southern Australian marine echinoderms and decapods. J. Biogeogr. 27(6), 1321–1335. https://doi.org/10.1046/j.1365-2699.2000.00499.x (2000).
Google Scholar
Waters, J. M. Marine biogeographical disjunction in temperate Australia: Historical landbridge, contemporary currents, or both? Divers. Distrib. 14(4), 692–700. https://doi.org/10.1111/j.1472-4642.2008.00481.x (2008).
Google Scholar
Davis, T. R., Champion, C. & Coleman, M. A. Climate refugia for kelp within an ocean warming hotspot revealed by stacked species distribution modelling. Mar. Environ. Res. 166, 105267. https://doi.org/10.1016/j.marenvres.2021.105267 (2021).
Google Scholar
Barrows, T. T. & Juggins, S. Sea-surface temperatures around the Australian margin and Indian Ocean during the last glacial maximum. Quat. Sci. Rev. 24(7–9), 1017–1047. https://doi.org/10.1016/j.quascirev.2004.07.020 (2005).
Google Scholar
Richmond, S. & Stevens, T. Classifying benthic biotopes on sub-tropical continental shelf reefs: How useful are abiotic surrogates? Estuar. Coast. Shelf Sci. 138, 79–89. https://doi.org/10.1016/j.ecss.2013.12.012 (2014).
Google Scholar
Jordan, A. et al. Seabed Habitat Mapping of the Continental Shelf of NSW (New South Wales Department of Environment, Climate Change and Water, 2010).
Lewis, S. E., Sloss, C. R., Murray-Wallace, C. V., Woodroffe, C. D. & Smithers, S. G. Post-glacial sea-level changes around the Australian margin: A review. Quat. Sci. Rev. 74, 115–138. https://doi.org/10.1016/j.quascirev.2012.09.006 (2013).
Google Scholar
Millar, A. J. K. Marine benthic algae of Norfolk island, South Pacific. Aust. Syst. Bot. 12(4), 479–547. https://doi.org/10.1071/SB98004 (1999).
Google Scholar
Ridgway, K. R. & Dunn, J. R. Mesoscale structure of the mean East Australian current system and its relationship with topography. Prog. Oceanogr. 56, 189–222. https://doi.org/10.1016/S0079-6611(03)00004-1 (2003).
Google Scholar
Lough, J. M. & Hobday, A. J. Observed climate change in Australian marine and freshwater environments. Mar. Freshw. Res. 62(9), 984–999. https://doi.org/10.1071/MF10272 (2011).
Google Scholar
Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18(9), 944–953. https://doi.org/10.1111/ele.12474 (2015).
Google Scholar
Coleman, M. A. et al. Variation in the strength of continental boundary currents determines patterns of large-scale connectivity in kelp. J. Ecol. 99, 1026–1032 (2011).
Google Scholar
Maeda, T., Kawai, T., Nakaoka, M. & Yotsukura, N. Effective DNA extraction method for fragment analysis using capillary sequencer of the kelp, Saccharina. J. Appl. Phycol. 25, 337–347. https://doi.org/10.1007/s10811-012-9868-3 (2013).
Google Scholar
Lane, C. E., Lindstrom, S. C. & Saunders, G. W. A molecular assessment of northeast Pacific Alaria species (Laminariales, Phaeophyceae) with reference to the utility of DNA barcoding. Mol. Phylogenet. Evol. 44(2), 634–648. https://doi.org/10.1016/j.ympev.2007.03.016 (2007).
Google Scholar
Saunders, G. W. & McDevit, D. C. Acquiring DNA sequence data from dried archival red algae (Florideophyceae) for the purpose of applying available names to contemporary genetic species: A critical assessment. Botany 90, 191–203 (2012).
Google Scholar
Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 (2012).
Google Scholar
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340 (2004).
Google Scholar
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 (1990).
Google Scholar
Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34(12), 3299–3302. https://doi.org/10.1093/molbev/msx248 (2017).
Google Scholar
Clement, M., Posada, D. & Crandall, K. A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 9(10), 1657–1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x (2000).
Google Scholar
Leigh, J. & Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6(9), 1110–1116. https://doi.org/10.1111/2041-210X.12410 (2015).
Google Scholar
Inkscape Project. Inkscape Project. https://inkscape.org/ (2020).
Coleman, M. A. et al. Connectivity within and among a network of temperate marine reserves. PLoS ONE 6(5), e20168. https://doi.org/10.1371/journal.pone.0020168 (2011).
Google Scholar
Davis, T. R., Cadiou, G., Champion, C. & Coleman, M. A. Environmental drivers and indicators of change in habitat and fish assemblages within a climate change hotspot. Reg. Mar. Stud. https://doi.org/10.1016/j.rsma.2020.101295 (2020).
Google Scholar
Mix, A. C., Bard, E. & Schneider, R. Environmental processes of the ice age: Land, oceans, glaciers (EPILOG). Quat. Sci. Rev. 20(4), 627–657. https://doi.org/10.1016/S0277-3791(00)00145-1 (2001).
Google Scholar
Waters, J. M. Competitive exclusion: Phylogeography’s ‘elephant in the room’? Mol. Ecol. 20(21), 4388–4394. https://doi.org/10.1111/j.1365-294X.2011.05286.x (2011).
Google Scholar
Cresswell, G. R., Peterson, J. L. & Pender, L. F. The East Australian current, upwellings and downwellings off eastern-most Australia in summer. Mar. Freshw. Res. 68(7), 1208–1223. https://doi.org/10.1071/MF16051 (2016).
Google Scholar
Hewitt, G. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58(3), 247–276. https://doi.org/10.1006/bijl.1996.0035 (1995).
Google Scholar
Waters, J. M., Fraser, C. I. & Hewitt, G. M. Founder takes all: Density-dependent processes structure biodiversity. Trends Ecol. Evol. 28(2), 78–85. https://doi.org/10.1016/j.tree.2012.08.024 (2013).
Google Scholar
Wernberg, T. et al. Genetic diversity and kelp forest vulnerability to climatic stress. Sci. Rep. 8(1851), 1–8. https://doi.org/10.1038/s41598-018-20009-9 (2018).
Google Scholar
Coleman, M. A. & Kelaher, B. P. Connectivity among fragmented populations of a habitat-forming alga, Phyllospora comosa (Phaeophyceae, Fucales) on an urbanised coast. Mar. Ecol. Prog. Ser. 381, 63–70 (2009).
Google Scholar
Drábková, L. Z. DNA extraction from herbarium specimens. In Molecular Plant Taxonomy. Methods in Molecular Biology Vol. 1115 (ed. Besse, P.) (Humana Press, 2014).
Goff, L. J. & Moon, D. A. PCR amplification of nuclear and plastid genes from algal herbarium specimens and algal spores 1. J. Phycol. 29, 381 (1993).
Google Scholar
Nahor, O., Luzzatto-Knaan, T. & Israel, A. A new genetic lineage of Asparagopsis taxiformis (Rhodophyta) in the Mediterranean Sea: As the DNA barcoding indicates a recent Lessepsian introduction. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.873817 (2022).
Google Scholar
Coleman, M. A. & Brawley, S. H. Variability in temperature and historical patterns in reproduction in the Fucus distichus complex (Heterokontophyta; Phaeophyceae): Implications for speciation and collection of herbarium specimens. J. Phycol. 41, 1110–1119 (2005).
Google Scholar
Martins, N. et al. Hybrid vigour for thermal tolerance in hybrids between the allopatric kelps Laminaria digitata and L. pallida (Laminariales, Phaeophyceae) with contrasting thermal affinities. Eur. J. Phys. 54(4), 548–561 (2019).
Google Scholar
Source: Ecology - nature.com