in

Climate drives global functional trait variation in lizards

  • Higham, T. E. et al. Linking ecomechanical models and functional traits to understand phenotypic diversity. Trends Ecol. Evol. 36, 860–873 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Kearney, M. R., Jusup, M., McGeoch, M. A., Kooijman, S. A. & Chown, S. L. Where do functional traits come from? The role of theory and models. Funct. Ecol. 35, 1385–1396 (2021).

    Article 
    CAS 

    Google Scholar 

  • Mayr, E. Geographical character gradients and climatic adaptation. Evolution 10, 105–108 (1956).

    Article 

    Google Scholar 

  • Gaston, K. J., Chown, S. L. & Evans, K. L. Ecogeographical rules: elements of a synthesis. J. Biogeogr. 35, 483–500 (2008).

    Article 

    Google Scholar 

  • Chown, S. L. & Gaston, K. J. Macrophysiology for a changing world. Proc. R. Soc. B 275, 1469–1478 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rubalcaba, J. G. & Jimeno, B. Biophysical models unravel associations between glucocorticoids and thermoregulatory costs across avian species. Funct. Ecol. 36, 64–72 (2022).

    Article 
    CAS 

    Google Scholar 

  • Anderson, R. O., White, C. R., Chapple, D. G. & Kearney, M. R. A hierarchical approach to understanding physiological associations with climate. Glob. Ecol. Biogeogr. 31, 332–346 (2022).

    Article 

    Google Scholar 

  • Angilletta, M. J. Jr, Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27, 249–268 (2002).

    Article 

    Google Scholar 

  • Olalla‐Tárraga, M. Á., Rodríguez, M. Á. & Hawkins, B. A. Broad‐scale patterns of body size in squamate reptiles of Europe and North America. J. Biogeogr. 33, 781–793 (2006).

    Article 

    Google Scholar 

  • Amado, T., Moreno Pinto, M. G. & Olalla‐Tárraga, M. Á. Anuran 3D models reveal the relationship between surface area‐to‐volume ratio and climate. J. Biogeogr. 46, 1429–1437 (2019).

    Google Scholar 

  • Castro, K. M. S. A. et al. Water constraints drive allometric patterns in the body shape of tree frogs. Sci. Rep. 11, 1218 (2021).

  • Clusella-Trullas, S., Terblanche, J. S., Blackburn, T. M. & Chown, S. L. Testing the thermal melanism hypothesis: a macrophysiological approach. Funct. Ecol. 22, 232–238 (2008).

  • Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Bennett, J. M. et al. The evolution of critical thermal limits of life on Earth. Nat. Commun. 12, 1198 (2021).

  • Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muñoz, M. M. The Bogert effect, a factor in evolution. Evolution 76, 49–66 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huey, R. B., Hertz, P. E. & Sinervo, B. Behavioral drive versus behavioral inertia in evolution: a null model approach. Am. Nat. 161, 357–366 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Kearney, M. R. & Porter, W. P. NicheMapR—an R package for biophysical modelling: the microclimate model. Ecography 40, 664–674 (2017).

    Article 

    Google Scholar 

  • Messier, J., McGill, B. J., Enquist, B. J. & Lechowicz, M. J. Trait variation and integration across scales: is the leaf economic spectrum present at local scales? Ecography 40, 685–697 (2017).

    Article 

    Google Scholar 

  • Ricklefs, R. E. & Schluter, D. (eds) Species Diversity in Ecological Communities: Historical and Geographical Perspectives (Univ. Chicago Press, 1993).

  • Angilletta, M. J. Jr, Steury, T. D. & Sears, M. W. Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr. Comp. Biol. 44, 498–509 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Pincheira-Donoso, D. The balance between predictions and evidence and the search for universal macroecological patterns: taking Bergmann’s rule back to its endothermic origin. Theory Biosci. 129, 247–253 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Slavenko, A. et al. Global patterns of body size evolution in squamate reptiles are not driven by climate. Glob. Ecol. Biogeogr. 28, 471–483 (2019).

    Article 

    Google Scholar 

  • Stevenson, R. D. Body size and limits to the daily range of body temperature in terrestrial ectotherms. Am. Nat. 125, 102–117 (1985).

    Article 

    Google Scholar 

  • Rubalcaba, J. G., Gouveia, S. F. & Olalla‐Tárraga, M. A. A mechanistic model to scale up biophysical processes into geographical size gradients in ectotherms. Glob. Ecol. Biogeogr. 28, 793–803 (2019).

    Article 

    Google Scholar 

  • Rubalcaba, J. G. & Olalla‐Tárraga, M. Á. The biogeography of thermal risk for terrestrial ectotherms: scaling of thermal tolerance with body size and latitude. J. Anim. Ecol. 89, 1277–1285 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Pincheira-Donoso, D., Hodgson, D. J. & Tregenza, T. The evolution of body size under environmental gradients in ectotherms: why should Bergmann’s rule apply to lizards? BMC Evol. Biol. 8, 68 (2008).

  • Jablonski, D. Biotic interactions and macroevolution: extensions and mismatches across scales and levels. Evolution 62, 715–739 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Kearney, M. R., Porter, W. P. & Huey, R. B. Modelling the joint effects of body size and microclimate on heat budgets and foraging opportunities of ectotherms. Methods Ecol. Evol. 12, 458–467 (2021).

    Article 

    Google Scholar 

  • Campbell-Staton, S. C., Bare, A., Losos, J. B., Edwards, S. V. & Cheviron, Z. A. Physiological and regulatory underpinnings of geographic variation in reptilian cold tolerance across a latitudinal cline. Mol. Ecol. 27, 2243–2255 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boretto, J. M., Fernández, J. B., Cabezas-Cartes, F., Medina, M. S. & Ibargüengoytía, N. R. in Lizards of Patagonia (eds Morando, M. & Avila, L. J.) 335–371 (Springer, 2020).

  • Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Hoffmann, A. A., Chown, S. L. & Clusella‐Trullas, S. Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct. Ecol. 27, 934–949 (2013).

    Article 

    Google Scholar 

  • Sunday, J. et al. Thermal tolerance patterns across latitude and elevation. Philos. Trans. R. Soc. B 374, 20190036 (2019).

    Article 

    Google Scholar 

  • Huey, R. B. & Slatkin, M. Cost and benefits of lizard thermoregulation. Q. Rev. Biol. 51, 363–384 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B 281, 20132612 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Porter, W. P., Mitchell, J. W., Beckman, W. A. & DeWitt, C. B. Behavioral implications of mechanistic ecology. Oecologia 13, 1–54 (1973).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hertz, P. E., Huey, R. B. & Stevenson, R. D. Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. Am. Nat. 142, 796–818 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fey, S. B. et al. Opportunities for behavioral rescue under rapid environmental change. Glob. Change Biol. 25, 3110–3120 (2019).

    Article 

    Google Scholar 

  • Martin, T. L. & Huey, R. B. Why ‘suboptimal’ is optimal: Jensen’s inequality and ectotherm thermal preferences. Am. Nat. 171, E102–E118 (2008).

    Article 
    PubMed 

    Google Scholar 

  • R Core Team. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • Campbell, G. S. & Norman, J. M. An Introduction to Environmental Biophysics 2nd edn (Springer-Verlag, 1998).

  • Mao, J. & Yan, B. Global Monthly Mean Leaf Area Index Climatology, 1981–2015 (ORNL DAAC, 2019).

  • Meiri, S. et al. Are lizards feeling the heat? A tale of ecology and evolution under two temperatures. Glob. Ecol. Biogeogr. 22, 834–845 (2013).

    Article 

    Google Scholar 

  • Marino, S., Hogue, I. B., Ray, C. J. & Kirschner, D. E. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254, 178–196 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Renardy, M., Hult, C., Evans, S., Linderman, J. J. & Kirschner, D. E. Global sensitivity analysis of biological multiscale models. Curr. Opin. Biomed. Eng. 11, 109–116 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carnell, R. lhs: Latin hypercube samples. R package version 1.1.1 (2020).

  • Meiri, S. Traits of lizards of the world: variation around a successful evolutionary design. Glob. Ecol. Biogeogr. 27, 1168–1172 (2018).

    Article 

    Google Scholar 

  • Clusella-Trullas, S., Blackburn, T. M. & Chown, S. L. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am. Nat. 177, 738–751 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Bennett, J. M. et al. GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5, 180022 (2018).

  • Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W. & Pyron, R. A. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conserv. 204, 23–31 (2016).

    Article 

    Google Scholar 

  • Ives, A. R. R2s for correlated data: phylogenetic models, LMMs, and GLLMs. Syst. Biol. 68, 234–251 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Johnson, T. F., Isaac, N. J. B., Paviolo, A. & González-Suárez, M. Handling missing values in trait data. Glob. Ecol. Biogeogr. 30, 51–62 (2020).

    Article 

    Google Scholar 

  • Goolsby, E. W., Bruggeman, J. & Ané, C. Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within‐species variation. Methods Ecol. Evol. 8, 22–27 (2017).

    Article 

    Google Scholar 

  • Koenker, R. et al. Package ‘quantreg’ (R-CRAN, 2018); https://cran.r-project.org/web/packages/quantreg/quantreg.pdf

  • Griffith, D. A. & Peres-Neto, P. R. Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87, 2603–2613 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Bivand, R. R packages for analyzing spatial data: a comparative case study with areal data. Geogr. Anal. 54, 488–518 (2022).

    Article 

    Google Scholar 

  • Rubalcaba, J. G. et al. Data: ‘Climate drives global functional trait variation in lizards’. figshare https://doi.org/10.6084/m9.figshare.19949315 (2022).


  • Source: Ecology - nature.com

    Local environment drives rapid shifts in composition and phylogenetic clustering of seagrass microbiomes

    3 Questions: Antje Danielson on energy education and its role in climate action