in

Comparing avian species richness estimates from structured and semi-structured citizen science data

  • Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schumaker, N. H. Using landscape indices to predict habitat connectivity. Ecology 77, 1210–1225 (1996).

    Article 

    Google Scholar 

  • Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Chang. 5, 215–224 (2015).

    Article 
    ADS 

    Google Scholar 

  • Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).

    Article 

    Google Scholar 

  • Clavero, M., Brotons, L., Pons, P. & Sol, D. Prominent role of invasive species in avian biodiversity loss. Biol. Conserv. 142, 2043–2049 (2009).

    Article 

    Google Scholar 

  • Soroye, P., Ahmed, N. & Kerr, J. T. Opportunistic citizen science data transform understanding of species distributions, phenology, and diversity gradients for global change research. Glob. Change Biol. 24, 5281–5291 (2018).

    Article 
    ADS 

    Google Scholar 

  • Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).

    Article 

    Google Scholar 

  • Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: Challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).

    Article 

    Google Scholar 

  • Kelling, S. et al. Using semistructured surveys to improve citizen science data for monitoring biodiversity. Bioscience 69, 170–179 (2019).

    Article 

    Google Scholar 

  • Steen, V. A., Elphick, C. S. & Tingley, M. W. An evaluation of stringent filtering to improve species distribution models from citizen science data. Divers. Distrib. 25, 1857–1869 (2019).

    Article 

    Google Scholar 

  • Crall, A. W. et al. Assessing citizen science data quality: An invasive species case study. Conserv. Lett. 4, 433–442 (2011).

    Article 

    Google Scholar 

  • Bird, T. J. et al. Statistical solutions for error and bias in global citizen science datasets. Biol. Conserv. 173, 144–154 (2014).

    Article 

    Google Scholar 

  • MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255 (2002).

    Article 

    Google Scholar 

  • Kellner, K. F. & Swihart, R. K. Accounting for imperfect detection in ecology: A quantitative review. PLoS ONE 9(10), E111436 (2014).

    Article 
    ADS 

    Google Scholar 

  • Weisshaupt, N., Lehikoinen, A., Mäkinen, T. & Koistinen, J. Challenges and benefits of using unstructured citizen science data to estimate seasonal timing of bird migration across large scales. PLoS ONE 16, e0246572 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kéry, M. & Schmid, H. Estimating species richness: Calibrating a large avian monitoring programme. J. Appl. Ecol. 43, 101–110 (2006).

    Article 

    Google Scholar 

  • Chao, A. & Chiu, C. H. Species richness: Estimation and comparison 1–26 (Wiley StatsRef: Statistics Reference Online, 2014).

    Google Scholar 

  • Walther, B. A. & Moore, J. L. The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28, 815–829 (2005).

    Article 

    Google Scholar 

  • Chao, A. & Lee, S.-M. Estimating the number of classes via sample coverage. J. Am. Stat. Assoc. 87, 210–217 (1992).

    Article 
    MATH 

    Google Scholar 

  • Walther, B. A. & Morand, S. Comparative performance of species richness estimation methods. Parasitology 116, 395–405 (1998).

    Article 

    Google Scholar 

  • Walther, B. A. & Martin, J. L. Species richness estimation of bird communities: How to control for sampling effort?. Ibis 143, 413–419 (2001).

    Article 

    Google Scholar 

  • Walther, B. A., Cotgreave, P., Price, R., Gregory, R. & Clayton, D. H. Sampling effort and parasite species richness. Parasitol. Today 11, 306–310 (1995).

    Article 
    CAS 

    Google Scholar 

  • Colwell, R. K. & Coddington, J. A. Estimating terrestrial biodiversity through extrapolation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 345, 101–118 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bean, W. T., Stafford, R. & Brashares, J. S. The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models. Ecography 35, 250–258 (2012).

    Article 

    Google Scholar 

  • Flather, C. Fitting species–accumulation functions and assessing regional land use impacts on avian diversity. J. Biogeogr. 23, 155–168 (1996).

    Article 

    Google Scholar 

  • White, P. E. et al. A comparison of the species–time relationship across ecosystems and taxonomic groups. Oikos 112, 185–195 (2006).

    Article 

    Google Scholar 

  • McGlinn, D. J. & Palmer, M. W. Modeling the sampling effect in the species–time–area relationship. Ecology 90, 836–846 (2009).

    Article 

    Google Scholar 

  • Isaac, N. J. et al. Statistics for citizen science: Extracting signals of change from noisy ecological data. Method Ecol. Evol. 5, 1052–1060 (2014).

    Article 

    Google Scholar 

  • Ding, T. et al. The 2020 CWBF checklist of the birds of Taiwan (Chinese Wild Bird Federation, 2020).

    Google Scholar 

  • Lin, M.-M. et al. Bird records database of a Taiwanese non-governmental organization, the Chinese wild bird federation, from 1972 to 2017. TW. J. Biodivers. 21, 83–101 (2019).

    Google Scholar 

  • Dokter, A. M., Desmet, P., Van Hoey, S. (2022) bioRad: Biological analysis and visualization of weather radar data: v0. 6.0

  • Strimas-Mackey, M. et al. (2020) Best practices for using eBird Data. Version 1.0. Cornell Laboratory of Ornithology, Ithaca, New York, 10.5281/zenodo.3620739

  • Robinson, O. J. et al. Using citizen science data in integrated population models to inform conservation. Biol. Conserv. 227, 361–368 (2018).

    Article 

    Google Scholar 

  • Callaghan, C. T., Martin, J. M., Major, R. E. & Kingsford, R. T. Avian monitoring–comparing structured and unstructured citizen science. Wildl. Res. 45, 176–184 (2018).

    Article 

    Google Scholar 

  • Robinson, W. D., Hallman, T. A. & Hutchinson, R. A. Benchmark bird surveys help quantify counting accuracy in a citizen-science database. Front. Ecol. Evol. 9, 568278 (2021).

    Article 

    Google Scholar 

  • Neate-Clegg, M. H., Horns, J. J., Adler, F. R., Aytekin, M. Ç. K. & Şekercioğlu, Ç. H. Monitoring the world’s bird populations with community science data. Biol. Conserv. 248, 108653 (2020).

    Article 

    Google Scholar 

  • Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat 1, 265–270 (1984).

    Google Scholar 

  • Hsieh, T., Ma, K. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Article 

    Google Scholar 

  • Team, R. C. (2013).R: A language and environment for statistical computing.

  • James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning Vol. 112 (Springer, 2013).

    Book 
    MATH 

    Google Scholar 

  • Magurran, A. E. & McGill, B. J. Biological diversity: Frontiers in measurement and assessment (OUP Oxford, 2010).

    Google Scholar 

  • Spiess, A.-N. (2018) Package ‘propagate’

  • RC Team, C Worldwide. The R stats package (R Foundation for Statistical Computing, 2002).

    Google Scholar 

  • Guralnick, R. & Van Cleve, J. Strengths and weaknesses of museum and national survey data sets for predicting regional species richness: Comparative and combined approaches. Divers. Distrib. 11, 349–359 (2005).

    Article 

    Google Scholar 

  • Dar, T. A. et al. Bird community structure in Phakot and Pathri Rao watershed areas in Uttarakhand. India. Int. J. Environ. Sci. 34, 193–205 (2008).

    Google Scholar 

  • Azevedo, G. H. et al. Effectiveness of sampling methods and further sampling for accessing spider diversity: A case study in a Brazilian Atlantic rainforest fragment. Insect. Conserv. Divers. 7, 381–391 (2014).

    Article 

    Google Scholar 

  • Bonter, D. N. & Cooper, C. B. Data validation in citizen science: A case study from project feederwatch. Front. Ecol. Environ. 10, 305–307 (2012).

    Article 

    Google Scholar 

  • Gómez-Martínez, C. et al. Forest fragmentation modifies the composition of bumblebee communities and modulates their trophic and competitive interactions for pollination. Sci. Rep. 10, 1–15 (2020).

    Article 

    Google Scholar 

  • Sullivan, B. L. et al. eBird: A citizen-based bird observation network in the biological sciences. Biol. Conserv. 142, 2282–2292 (2009).

    Article 

    Google Scholar 

  • Newson, S. E., Woodburn, R. J., Noble, D. G., Baillie, S. R. & Gregory, R. D. Evaluating the breeding bird survey for producing national population size and density estimates. Bird Study 52, 42–54 (2005).

    Article 

    Google Scholar 

  • Robbins, C. S. Effect of time of day on bird activity. Stud. Avian Biol. 6, 275–286 (1981).

    Google Scholar 

  • Farmer, R. G., Leonard, M. L. & Horn, A. G. Observer effects and avian-call-count survey quality: Rare-species biases and overconfidence. Auk 129, 76–86 (2012).

    Article 

    Google Scholar 

  • Gardiner, M. M. et al. Lessons from lady beetles: Accuracy of monitoring data from US and UK citizen-science programs. Front. Ecol. Environ. 10, 471–476 (2012).

    Article 

    Google Scholar 

  • Swanson, A., Kosmala, M., Lintott, C. & Packer, C. A generalized approach for producing, quantifying, and validating citizen science data from wildlife images. Conserv. Biol. 30, 520–531 (2016).

    Article 

    Google Scholar 

  • Ratnieks, F. L. et al. Data reliability in citizen science: Learning curve and the effects of training method, volunteer background and experience on identification accuracy of insects visiting ivy flowers. Methods Ecol. Evol. 7, 1226–1235 (2016).

    Article 

    Google Scholar 

  • Lopez, L. C. S., de Aguiar Fracasso, M. P., Mesquita, D. O., Palma, A. R. T. & Riul, P. The relationship between percentage of singletons and sampling effort: A new approach to reduce the bias of richness estimates. Ecol. Indicators 14, 164–169 (2012).

    Article 

    Google Scholar 

  • Bunge, J. & Fitzpatrick, M. Estimating the number of species: A review. J. Am. Stat. Assoc. 88, 364–373 (1993).

    Google Scholar 

  • SoberónM, J. & LlorenteB, J. The use of species accumulation functions for the prediction of species richness. Conserv. Biol. 7, 480–488 (1993).

    Article 

    Google Scholar 

  • Magurran, A. E. Species abundance distributions over time. Ecol. Lett. 10, 347–354 (2007).

    Article 

    Google Scholar 

  • de Caprariis, P., Lindemann, R. & Haimes, R. A relationship between sample size and accuracy of species richness predictions. J. Int. Assoc. Math. Geol. 13, 351–355 (1981).

    Article 

    Google Scholar 

  • Klemann-Junior, L., Villegas Vallejos, M. A., Scherer-Neto, P. & Vitule, J. R. S. Traditional scientific data vs. uncoordinated citizen science effort: A review of the current status and comparison of data on avifauna in Southern Brazil. PLoS ONE 12, e0188819. https://doi.org/10.1371/journal.pone.0188819 (2017).

    Article 
    CAS 

    Google Scholar 

  • Tulloch, A. I. & Szabo, J. K. A behavioural ecology approach to understand volunteer surveying for citizen science datasets. Emu 112, 313–325 (2012).

    Article 

    Google Scholar 

  • Boakes, E. H. et al. Distorted views of biodiversity: Spatial and temporal bias in species occurrence data. PLoS Biol. 8, e1000385 (2010).

    Article 

    Google Scholar 

  • Kamp, J. et al. Unstructured citizen science data fail to detect long-term population declines of common birds in Denmark. Divers. Distrib. 22, 1024–1035. https://doi.org/10.1111/ddi.12463 (2016).

    Article 

    Google Scholar 

  • Lin, Y.-P. et al. Uncertainty analysis of crowd-sourced and professionally collected field data used in species distribution models of Taiwanese moths. Biol. Conserv. 181, 102–110 (2015).

    Article 

    Google Scholar 

  • Fletcher, R. J. Jr. et al. A practical guide for combining data to model species distributions. Ecology 100, e02710 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Food insecurity and health outcomes among community-dwelling middle-aged and older adults in India

    Schooling behavior driven complexities in a fear-induced prey–predator system with harvesting under deterministic and stochastic environments